2-2خواص اشتعال نانو کامپوزیت های پلیمری.. 25
2-2-1 مقدمه. 25
2-2-2توصیف و تحلیل تشکیل نانوکامپوزیت… 28
2-2-3بررسی تأخیر اشتعال.. 31
2-2-4مکانیسم های تأخیر اشتعال در نانو کامپوزیت ها 32
2-3 پلییورتان.. 33
2-3-1 مقدمه. 33
2-3-2اشکال مختلف پلی یورتان.. 37
2-3-3كاربردهای پلییورتانها 37
2-3-4فومهای پلی یورتان.. 42
2-3-5دانسیته فومها 44
2-3-6روش های متداول استفاده از فوم پلی یورتان 45
2-4مدلسازی پاسخ حرارتی کامپوزیت در شعله. 46
2-4-1 مقدمه. 46
2-4-2پاسخ کامپوزیت ها در شعله. 50
2-4-3مدلسازی هدایت حرارتی در کامپوزیتها 56
2-4-4مدلسازی پاسخ حرارتی كامپوزیتها 61
2-4-5مدلسازی خواص حرارتی كامپوزیتها 79
3کارهای تجربی و مدلسازی.. 87
3-1مقدمه 87
3-2کارهای آزمایشگاهی.. 90
3-2-1مواد مصرفی.. 90
3-2-2روش تهیه نمونهها 92
3-2-3آزمونها و دستگاهها 95
3-3مدلسازی ریاضی پاسخ حرارتی.. 95
3-4تعیین پارامترهای سینتیکی.. 99
3-4-1 روش Friedman. 101
4تجزیه و تحلیل نتایج.. 127
4-1مکانیسم تجزیه. 127
4-2توضیح مراحل فیزیکی نمودار. 130
4-3مقایسه نتایج مدلسازیها با نتایج آزمایشگاهی.. 139
5نتیجهگیری و پیشنهادات.. 147
5-1نتایج کلی.. 147
5-2پیشنهادات.. 148
6مراجع 150
پیشگفتار
مدل به نوعی ساده کردن واقعیت است و میتواند چیزهای واقعی یا ذهنی از یک حوزه خاص را ارائه میکند. یک مدل خوب شامل عناصر مؤثر و حذف عناصر غیر مؤثر که ربط مستقیم در فرآیند نداشته و یا اینکه پیچیدگی مدل را افزایش میدهد، است. هر سیستم ممکن است از جنبههای مختلف توسط مدلهای مختلف مورد بررسی قرار بگیرد.
بطور کلی مدلسازی باعث میشود که درک بهتری از رفتار سامانه حاصل شود، مدل امکان مشخص کردن ساختار و رفتار سیستم را حتی قبل از ساخت را خواهد داد. در نتیجه امکان برطرف کردن معایب سیستم حتی قبل از تولید را به ما خواهد داد؛ که بالطبع خود موجب صرفهجویی زیاد در هزینه و زمان خواهد شد. با درک رفتار سیستم امکان کنترل سیستم و روند آن را داشته و با درک بهتر سیستم، مدیریت ریسک سیستم و استناد به روشها و تغییرات اعمال شده بر سیستم مستند خواهد شد. در واقع میتوان گفت مدل خلاصهای از واقعیت را نشان میدهد. به بیان دیگر نمایش کلیات و یا فیزیک یک شیء یا سیستم و سامانه را از یک نقطه نظر و نگاه خاص را مدل مینامند.
مدلسازی؛ فرایند ایجاد و انتخاب مدل ها را مدلسازی نامیده اند. مدلها ، انواع گوناگون داشته (مثل فیزیکی، ریاضی، عددی، نرمافزاری، و …) و کاربردهای حیاتی متنوّع و فراوانی در همه زمینههای علوم و فنآوری دارند. تبدیل یک مفهوم فیزیکی، به زبان ریاضی، نوعی از مدلسازی است.که هرچه مفاهیم زبان ریاضی استفاده شده در آن سادهتر باشند، مدلسازی ارزش بیشتری دارد.
در مدلسازی ابتدا اجزای محیط واقعی انتخاب شده و متناسب با هدف مورد نظر از مدلسازی خصوصیاتی از هریك از اجزای واقعی انتزاع میشود، یعنی به ازای هزیك از اجزای محیط واقعی یك موجودیت مصنوعی ساخته میشود و با برقراری ارتباطی مشابه با ارتباط اجزای واقعی، در میان موجودیتهای مصنوعی، محیط واقعی مدل میشود. پس میتوان گفت كه هدف از مدلسازی دو چیز میباشد:
شناخت[1]
تنها یك جنبه از مدلسازی را بیان میكند و آن جنبه شناخت میباشد. یعنی در مدلسازیهای مشابه مدلسازی فوقالذكر، هدف از مدلسازی تنها شناخت محیط مورد مدل میباشد.
تبیین[2]
یك جنبه دیگر از مدلسازی، تبیین میباشد. یعنی گاه برای معرفی و ارائه خصوصیات یك موجودیت واقعی یك مدل از آن ارائه میشود. نقشه جغرافیایی مثال خوبی است كه این جنبه از مدلسازی را مورد نظر دارد.
بر اساس تعریف مسئله، مدلسازی یكی یا هردو هدف را در نظر میگیرد.
حال به این سوال بر میخوریم که تفاوت مدلسازی با شبیهسازی چیست؟
پاسخ این است که مدل سازی گام اول شبیه سازی است. در شبیه سازی رفتار یک سیستم را بر اساس یک سناریو میخواهیم به دست بیاوریم که این رفتار را بر اساس روابط ریاضی یا نمیتوان بدست آورد یا بسیار پیچیده است.
بر اساس سناریوی تعریف شده رفتار مدل سازی شده و بعد مدل اعتبارسنجی[3] شده و سپس رفتار سیستم بر اساس سناریو پیشبینی و شبیهسازی می گردد.
آنچه در این اثر به آن پرداخته شده؛ بترتیب فصول؛ عبارتند از: کامپوزیتهای تأخیردهنده اشتعال، خواص اشتعال نانوکاپوزیتهای پلیمری، پلییورتان، مدلسازی پاسخ حرارتی کامپوزیت در شعله، و نهایتاً بخش اصلی که در آن ابتدا به تهیه و بررسی نانوکامپوزیت پلییورتان/نانورس/اوره کندانس پرداخته و سپس به بحث مدلسازی پاسخ حرارتی نمونه و برررسی رفتار انتقال حرارت تک-بعدی و ارتباط تغییرات دما و جرم در کامپوزیت پلیمری ساخته شده از پلییورتان/نانورس/اوره کندانس خواهیم پرداخت.
فصل دوم
2 مروری بر تحقیقهای انجام شده
2-1 کامپوزیت های تأخیردهنده اشتعال
2-1-1مقدمه
در این بخش یک نگاه کلی به روشهای افزودن و بهینه کردن خواص تأخیر اشتعال در کامپوزیت های تقویت شده با الیاف خواهیم داشت. روش های مورد استفاده فوق العاده متنوع و متفاوت می باشند. افزودنی های ساده آلیاژ شونده با ماتریس پلیمری یا پوشش های مقاوم در حرارت[5]، روشهای شیمیایی اصلاح ماتریس کامپوزیتهایی که سطح آنها با گرما به instumescence تبدیل میشود. همچنین روش هایی برای بهبود پایداری حرارتی و مقاومت در برابر آتش الیاف آلی مورد استفاده در کامپوزیت نیز مشخص شده است. روش معمول برای کاهش اشتعال پذیری کامپوزیت، افزودن پرکننده داخلی (مثل تالک، سیلیکا) یا پرکننده فعال حرارتی (مثل اکسیدهای هیدراته[6]) به ماتریس پلیمری است. انواع پرکننده ها مکانیسم تأخیر اشتعال آنها و راندمان آنها زمانی که در مواد کامپوزیتی استفاده می شود شرح داده می شود بعد از آن به اصلاح ساختار شیمیایی پلیمیرهای آلی جهت بهبود مقاومت اشتعال پذیری با تکیه بر مکانیسم های تأخیر اشتعال و خواص برهمکنش شعله در پلیمرهای فسفره، کلره و برمه توضیح داده خواهد شد. برخی روش های گفته شده جهت تأخیر اشتعال صدها سال جهت کاهش اشتعال در پارچه لباس و چوب و اخیراً در پلیمرها و کامپوزیتهای پلیمری کاربرد دارد. دیگر روشها در 10 الی 50 سال گذشته ارائه شده است. چندین روش جدید نیز برای کاهش اشتعالپذیری در حال تکمیل و بهبود است و چشم انداز بزرگی جهت تأخیر اشتعال کامپوزیت ها را پیشنهاد می کنند. دیگر روش های موجود عبارتند از پلیمریزاسیون پیوندی اجزای تأخیردهنده اشتعال به پلیمر آلی و پلیمرهای با ساختار غیر معدنی غیر قابل اشتعال نیز از این روشها است. چرخه اساسی اشتعال کامپوزیتهای پلیمری به صورت شماتیک در شکل 2‑1 نشان داده شده است.
شکل 2‑1: چرخه اشتعال کامپوزیتهای پلیمری در آتش.علامت ضربدر مشخص کننده مراحلی از چرخه است که تاخیر دهنده اشتعال چرخه را بر هم میزند[1]
دمای حاصل از تجزیه وابسته به طبیعت شیمیایی پلیمر و اتمسفر آتش است اما به صورت عمده این دما در محدوده 500-300 درجه سانتی گراد برای بیشتر پلیمرها و الیاف آلی مورد استفاده در کامپوزیت ها می باشد. همانطور که گفته شده گازهای حاصل از تجزیه از درون کامپوزیت به شعله جریان می یابد. در اینجا مواد ناپایدار قابل اشتعال با اکسیژن واکنش می دهد و به مقدار زیاد رادیکال فعال OH و H را تولید می کند. این رادیکال ها نقش مهمی در واکنش های زنجیره ای منجر به تجزیه و سوختن زنجیره ای پلیمرها و دیگر سوخت های آلی بازی می کند. واکنش های پیرولیز در شعله به صورت ساده به وسیله نهاد O2-H2 توصیف می شود:
(2‑1) |
(2‑2) |
واکنش گرمازای اصلی که بیشترین انرژی گرمایی در شعله را تولید می کند عبارتست از:
(2‑3) |
[سه شنبه 1399-10-09] [ 05:22:00 ق.ظ ]
|