کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل


 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

 

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کاملکلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

لطفا صفحه را ببندید

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل

کلیه مطالب این سایت فاقد اعتبار و از رده خارج است. تعطیل کامل



جستجو


آخرین مطالب


 



1-3- سنتز غربال­های مولکولی توسط ریزموج (MW) ………………………………………….. 5

1-4- قالب­ دهنده­ها و نقش آن در سنتز غربال­های مولکولی …………………………………  7
1-5- نقش امواج فراصوت و حلال­های کمکی در سنتز غربال­های مولکولی …………………..  8
 فصل دوم: تئوری …………………………………………………………………………………..  12
2-1- نظریۀ طیف­سنجی رزونانس مغناطیسی هسته (NMR) ………………………………..  13
2-2- توصیف و بررسی غربال­های مولکولی توسط پراش پرتو ایکس ………………………….  17
2-3- توصیف و بررسی غربال­های مولکولی توسط میکروسکوپ الکترونی پویشی …………  20
2-4- توصیف و بررسی غربال­های مولکولی توسط طیف­سنجی مادون قرمز ………………….  22
2-5- اندازه­گیری عناصر سازندۀ زئولیت­ها و غربال­های مولکولی …………………………………  23
2-6- اندازه­گیری ظرفیت مبادلۀ یون غربال­های مولکولی ………………………………………..  26
2-7- اندازه­گیری ظرفیت جذب سطحی غربال­های مولکولی …………………………………….  28
فصل سوم: بررسی طیف­سنجی 31P NMR  و 27Al NMR محلول­های آلومینوفسفات در محیط­های آبی و الکلی…31
3-1- کلیات ……………………………………………………………………………………………. 32
3-2- بخش تجربی ……………………………………………………………………………………. 37
3-2-1- مواد و روش تهیۀ محلول­ها ……………………………………………………………….  37
3-2-2- دستگاهوری ………………………………………………………………………………..  38
3-3- بحث و نتیجه­گیری …………………………………………………………………………….  40
3-3-1- بررسی طیف­های 27Al NMR و 31P NMR در محیط آبی …………………………………  40
3-3-1-1- بررسی طیف 27Al NMR محلول آلومینات و محلول با Al/P برابر یک ………………  40
3-3-1-2- بررسی طیف 27Al NMR و 31P NMR محلول­های آلومینوفسفات با 1 ≤Al/P  ……. 
3-3-1-3- بررسی طیف 27Al NMR و 31P NMR محلول­های آلومینوفسفات با 1 ≥Al/P   …… 
3-3-1-4- بررسی طیف 27Al NMR و 31P NMR سل- ژل آلومینوفسفات ……………………..  49
3-3-2- بررسی طیف­های 27Al NMR و 31P NMR در محیط­های الکلی ………………………….  54
3-3-2-1- بررسی طیف 27Al NMR محلول­های آلومینوفسفات متانولی ……………………….  54
3-3-2-2- بررسی طیف 31P NMR محلول­های آلومینوفسفات متانولی ……………………….  55
3-3-2-3- بررسی طیف­های 27Al NMR و 31P NMR محلول­های آلومینوفسفات اتانولی ………  62
3-4- نتیجه­گیری …………………………………………………………………………………….  64
فصل چهارم: سنتز و توصیف غربال­های مولکولی آلومینوفسفات ……………………………….  65
4-1- کلیات ……………………………………………………………………………………………  66
4-1-1- آلومینوفسفات­های شبکه خنثی (1=  Al/P) ……………………………………………..  66
4-1-2- آلومینوفسفات­های شبکه آنیونی (1 > Al/P) ……………………………………………..  68
4-1-3- الگوهای پیوندی در آلومینوفسفات­ها ……………………………………………………….  68
4-2- بخش تجربی …………………………………………………………………………………..  70
4-2-1- مواد مورد استفاده …………………………………………………………………………. 70
4-2-2- روش تهیۀ غربال­های مولکولی آلومینوفسفات …………………………………………. 71
4-2-3- دستگاه­های مورد استفاده ……………………………………………………………….. 72
4-3- بحث و نتیجه­گیری ……………………………………………………………………………. 73
4-3-1- اثر منبع آلومینیوم …………………………………………………………………………… 73
4-3-2- اثر قالب ­دهنده ……………………………………………………………………………… 74
4-3-3- اثر نسبت مولی آلومینیوم به فسفر ……………………………………………………. 77
4-3-4- اثر تابش ریزموج …………………………………………………………………………… 78
4-3-5- اثر مخلوط کردن با فراصوت ……………………………………………………………… 81
4-4- نتیجه­گیری …………………………………………………………………………………. 83
 فصل پنجم: سنتز و توصیف غربال­های مولکولی نیکل فسفات …………………………..  84
5-1- کلیات …………………………………………………………………………………………  85
5-2- بخش تجربی ………………………………………………………………………………..  89
5-2-1- مواد مورد استفاده ……………………………………………………………………….. 89
5-2-2- روش تهیۀ غربال­های مولکولی نیکل فسفات VSB-5 ………………………………..
5-3- بحث و نتیجه­گیری …………………………………………………………………………  90
5-3-1- اثر زمان هیدروترمال در تشکیل VSB-5 ………………………………………………
5-3-2- اثر قالب­ دهنده ………………………………………………………………………….. 96
5-3-3- اثر نسبت مولی نیکل به فسفر ……………………………………………………… 98
5-3-4- اثر همزدن با روش فراصوت …………………………………………………………… 100
5-3-5- اثر اتیلن­ گلیکول به­عنوان حلال کمکی …………………………………………….. 102
5-3-6- اثر پلی­اتیلن گلیکول به­عنوان حلال کمکی ………………………………………….. 104
5-3-7- سنتز کبالت- نیکل فسفات ……………………………………………………………. 106
5-4- نتیجه­گیری …………………………………………………………………………………. 107
فصل ششم: سنتز و توصیف غربال­های مولکولی روی فسفات …………………………..  109
6-1- کلیات ……………………………………………………………………………………..  110
6-2- بخش تجربی …………………………………………………………………………….  113
6-2-1- مواد مورد استفاده ……………………………………………………………………. 113
6-2-2- روش تهیۀ غربال­های مولکولی روی فسفات ……………………………………….. 113
6-3- بحث و نتیجه­گیری ………………………………………………………………………… 115
6-3-1- سنتز روی فسفات در محیط آبی ………………………………………………….. 115
6-3-2- سنتز روی فسفات در محیط غیرآبی ………………………………………………… 118
6-3-2-1- سنتز روی فسفات در مخلوط اتیلن گلیکول- آب …………………………………. 118
6-3-2-2- تجزیه و تحلیل طیف FT-IR ………………………………………………………
6-3-2-3- اثر نسبت حجمی اتیلن گلیکول به آب ……………………………………………. 122
6-4- نتیجه­گیری ………………………………………………………………………………… 124
فصل هفتم: استفاده از غربال­های مولکولی و نانوذرات نیکل فسفات جهت بررسی واکنش­های الکتروکاتالیزوری…125
7-1- کلیات ……………………………………………………………………………………….  126
7-2- بخش تجربی ………………………………………………………………………………  129
7-2-1- مواد مورد استفاده و روش تهیۀ محلول­ها ……………………………………………  129
7-2-2- سنتز غربال­های مولکولی و نانوذرات نیکل فسفات ………………………………….  130
7-2-3- دستگاهوری ……………………………………………………………………………  131
7-2-4- نحوۀ تهیه الکترودها ……………………………………………………………………… 132
7-3- بحث و نتیجه­گیری …………………………………………………………………………. 133
7-3-1- تبلور غربال­های مولکولی نیکل فسفات ………………………………………………. 133
7-3-2- بررسی فرآیند الکتروکاتالیز اکسایش متانول در محیط­های قلیایی………………….. 134
7-3-2-1- بررسی رفتار الکتروشیمیایی الکترودهای اصلاح شده ……………………………. 134
7-3-2-2- بررسی الکتروکاتالیز اکسایش متانول در سطح الکترود خمیرکربن اصلاح شده ….. 137
7-3-2-3- اثر سرعت روبش پتانسیل بر فرآیند الکتروکاتالیز اکسایش متانول …………………. 140
7-3-2-4- تأثیر غلظت متانول بر الکتروکاتالیز اکسایش متانول ………………………………… 140
7-3-3- اندازه­گیری داروهای PAR، PHE و CLP با حسگر الکتروشیمیایی Ni-NP2/CPE …….
7-3-3-1- فرآیند کلی آزمایش …………………………………………………………………….. 143
7-3-3-2- رفتار ولتامتری داروها …………………………………………………………………. 143
7-3-3-3- اثر پارامترهای مؤثر …………………………………………………………………… 146
7-3-3-4- محاسبه گسترۀ خطی، حد تشخیص و تکرارپذیری روش …………………………. 147
7-3-3-5- اثر مزاحمت داروهای دیگر ………………………………………………………… 147
7-3-3-6- اندازه­گیری داروها در نمونه­های تجاری ……………………………………………. 149
7-4- نتیجه­گیری …………………………………………………………………………………… 150
فصل هشتم: اندازه­گیری همزمان مواد دارویی با استفاده از طیف­سنجی UV-Vis  به کمک روش­های درجه­بندی چند­متغیره….151
8-1- کلیات ………………………………………………………………………………………. 152
8-1-1- درجه­بندی ………………………………………………………………………………. 153
8-1-1-1- روش مستقیم حداقل مربعات کلاسیک (CLS) یا تحلیل چند جزئی مستقیم (DMA)…155
8-1-1-2- روش­های درجه­بندی غیرمستقیم ………………………………………………….. 156
8-1-1-3- روش­های پیش­پردازش اطلاعات طیفی ………………………………………………. 162

مقالات و پایان نامه ارشد

 


8-1-2- تعیین تعداد فاکتورهای بهینه ………………………………………………………….. 164
8-1-3- کمیت­های آماری  برای ارزیابی توانایی پیش­بینی مدل ………………………… 165
8-1-4- ارقام شایستۀ تجزیه­ای …………………………………………………………….. 166
8-2- بخش تجربی ……………………………………………………………………………..  169
8-2-1- مواد مورد استفاده و روش تهیۀ محلول­ها ……………………………………….. 169
8-2-2- دستگاه و نرم­افزارهای مورد استفاده …………………………………………….. 171
8-2-3- مراحل آزمایش برای اندازه­گیری همزمان ویتامین­ها ……………………………… 171
8-2-4- مراحل آزمایش برای اندازه­گیری همزمان داروها ………………………………… 174
8-3- بحث و نتیجه گیری ……………………………………………………………………… 177
8-3-1- اندازه­گیری همزمان ویتامین­های سیانوکوبال آمین، متیل­کوبال آمین و کوآنزیم B12…..
8-3-1-1- نتایج درجه­بندی و ارزیابی ………………………………………………………. 178
8-3-1-2- اندازه­گیری ارقام شایستۀ تجزیه­ای ………………………………………….. 184
8-3-1-3- اندازه­گیری غلظت ویتامین­ها در نمونه­های مصنوعی و مجهول ……………… 185
8-3-2- اندازه­گیری همزمان داروهای پاراستامول، فنیل افرین هیدروکلرید و کلرو فنیر آمین مالئات…188
8-3-2-1- نتایج درجه­بندی و ارزیابی ………………………………………………………. 189
8-3-2-2- اندازه­گیری ارقام شایستۀ تجزیه­ای ……………………………………………. 194
8-3-2-3- اندازه­گیری غلظت دارو­ها در نمونه­های مصنوعی و مجهول ……………….. 195
8-4- نتیجه­گیری ………………………………………………………………………………. 197
فصل نهم: نتیجه­گیری نهایی …………………………………………………………………. 199
پیشنهادات برای کارهای آینده ………………………………………………………………. 203
مراجع ………………………………………………………………………………………… 204
مقالات چاپ شده در مجلات علمی ………………………………………………………. 217
مقالات ارسال شده به مجلات علمی ……………………………………………………… 218
مقالات ارائه شده در کنفرانس­های بین­المللی ……………………………………………. 219
مقالات ارائه شده در کنفرانس­های داخلی …………………………………………………… 220
چکیده:
در این رساله، از طیف­سنجی 27Al NMR و 31P NMR برای شناسایی توزیع کمپلکـس­های آلومینوفسـفات در محلول­های آبی و الکلی استفاده شد. کاتیون­های آلومینوفسفات محلول از واکنش هگزا آکوا آلومینیوم، [A1(H2O)6]3+، با لیگاندهای فسفات (نظیر H3PO4، H2PO4 و دیمر اسید H6P2O8، H5P2O7) حاصل می­شوند. در محیط آبی پنج پیک جداگانه توسط  طیف­سنجی 31P NMR مشاهده شدند، اما در مخلوط متانول- آب و اتانول- آب، نه پیک مشاهده گردید. چهار پیک جدید در موقعیت­های ppm 4/6-، 1/13-،1/18- و 6/20- در محلول­های الکلی آلومینوفسفات مشاهده شدند که شدت آنها با تغییر نسبت­های حجمـی الکل- آب دستخـوش تغییر شد. در سیستم سل- ژل آبی، دو پیک جدید توسـط طیـف­سنجی 31P NMR آشکارسازی شدند که مربوط به گونه­های {(OH)2–P–[O–Al(H2O)5]2}5+ و {(OH)–P–[O–Al(H2O)5]3}8+ می­باشند. می­توان بیان نمود که این گونه­ها به­عنوان واحدهای ساختـاری اولیه جهـت تشکـیل غربال­های مولکولی آلومینوفسـفات عمل می­کنند و این اطلاعات می­تواند برای فهم بهتر مکانیسم سنتز غربال­های مولکولی آلومینوفسفات جدید استفاده شود.
غربال­های مولکولی آلومینوفسفات با استفاده از فرآیند هیدروترمال معمول (CH) و هیدروترمال کمک­دهی شده با ریزموج (MAH) در حضور قالب دهنده (2- هیدروکسی اتیل) تری­متیل آمونیوم سنتز شدند. اثر نسبت مولی Al به P، اثر ترکیب شیمیایی سل- ژل اولیه و پارامترهای دیگر نظیر منبع آلومینیوم، زمان تابش­دهی ریزموج و اثر مـخلوط کننده فراصوت مورد مطالعه قرار گرفت. ریخت­شناسی و ترکیب غربال­های مولکولی سنتز شده با استفاده از فنون SEM، XRD و FT-IR مورد مطالعه قرار گرفتند.
چندین نوع غربال­های مولکولی نیکل فسفات با استفاده از روش­­های CH و MAH سنتز شدند. برای اولین بار در این کار، سنتز نیکل فسفات (با ریخت VSB-5) در حضور قالب دهنده (2- هیدروکسی اتیل) تری­متیـل آمونیـوم هیـدرروکسید (2-HETMAOH)  با زمان سنتز هیدروترمال 72 سـاعت انجام شد و یا با استفاده از روش MAH، به­مـدت یک ساعـت تابش­دهی ریز­موج و با زمان سنتز هیدروترمال 48 ساعت انجام شد. فرآیند تبدیل فاز با تغییر زمان سنتز هیدروترمال مشاهده گردید. فازهای بلوری VSB-5 به همراه Ni2P4O12، α-Ni2P2O7 و فازهای ناشناخته دیگر با تابش­دهی ریزموج یک ساعت به همراه 24 ساعت هیدروترمال تشکیل شدند، اما با افزایش زمان هیدروترمال تا 48 ساعت و بیشتر کلیه این فازها به فاز پایدار ترمودینامیکی یعنی VSB-5 تبدیل شدند. در مقادیر بالای نیکل، مخلوطی از فازهای α-Ni2P2O7، Ni2P4O12 و مقدار کمی بلورهای VSB-5 حاصل شد، امـا در مقادیر پایین­تر نیکل فازهای VSB-5 خالص به­وجود آمدند و فازهای دیگر ناپدید شدند. زمان سنتز هیدروترمال با نیم ساعت همزدن فراصـوت و یک ساعت تابش­دهی ریزموج از 48 به 24 ساعت کاهش یافت. نانوذرات کروی شکل نیکل فسفات با قطر متوسط 80 نانومتر در حضور قالب دهنده تترا پروپیل آمونیوم هیدروکسید سنتز شدند. همچنین نانوذرات کروی شکل نیکل فسفات با قطر متوسط 90 نانومتر در نسبت حجمی 1 : 1 از پلی اتیلن گلیکول به H2O و در حضور قالب دهنده2-HETMAOH  تهیه شدند.
الکترودهای خمیر کربن توسط غربال­های مولکولی و نانوذرات نیکل فسفات اصلاح شدند و رفتار الکتروشیمیایی این الکترودهای اصلاح شده با استفاده از ولتامتری چرخه­ای و پالس ولتـامتری تفاضلی مورد مطالعه قرار گرفت. این الکترودهای خمیر کربن اصلاح شده برای الکتروکاتالیز اکسایش متانول و اندازه­گیری برخی داروها استفاده گردید.
غربال­های مولکولی روی فسفات با استفاده از روی کلرید، فسفریک اسید و 2-HETMAOH به­عنوان قالب دهنده جدید سنتز شدند. ریخت و اندازۀ بلورهای سنتزی با استفاده از همزدن فراصوت مورد بررسی قرار گرفت که ذرات بلوری بزرگتر با اعمال فراصوت حاصل شدند. علاوه بر این، بلورهای میله­ای شکل β−Zn3(PO4)2.4H2O در حضور اتیلن گلیکول به­عنوان حلال کمکی تهیه شدند.
در فصل هشتم اندازه­گیری همزمان ویتامین B12 (VB12)، متیل­کوبال آمین (MCA) و کوآنزیم B12 (B12Co) توسط روش درجه­بندی چند­متغیره-1 (MVC1) (نظیر مدل­های PLS1،OSC/PLS ، PCR و HLA) با کمترین پیش آماده­سازی نمونه و بدون جداسازی اجزاء نمونه با استفاده از داده­های استـخراج شده از طیف­های UV-Vis انجام شد. بهترین مقدار ضریب همبستگی مربوط به پیش­بینی (R2Pred) برای VB12 برابر 979/0 توسط مدل PLS1، برای MCA برابر 995/0 توسط مدل OSC/PLS و برای B12Co برابر 982/0 توسط مـدل HLA به­­­دست آمد. همچنین مـقدار کمـینه RMSEP برای VB12، MCA و B12Co به ­ترتیب توسط مدل­های PLS1، OSC/PLS و HLA به­­دست آمد. مـدل­های ساختـه شده برای اندازه­گیری همزمان ویتامین­های فوق در نمونه­های مصنوعی و فرمولاسیون دارویی به­­کار برده شدند. در یک مجموعه آزمایشات دیگر، اندازه­گیری همزمان داروهای پاراستامول (PAR)، فنیل افرین هیدروکلرید (PHE) و کلرو فنیر آمین مالئات (CLP) توسط روش MVC1 (نظیر مدل­های PLS1، PCR و HLA) بدون جداسازی اجزاء نمونه انجام شد. مدل­های ساخته شده برای اندازه­گیری همزمان این داروها در نمونه­های مصنوعی و یک قرص ترکیبی با نام بایولنول کولد فورت به­کار برده شدند. مـقادیر مـیانگین درصد بازیافت خوب برای نمـونه­های مصنوعی و مجهول نشان دهندۀ دقت و صحت خوب مدل­های ساخـته شده برای هر سه دارو می­باشد که مدل­های PLS1، PCR و HLA به­­ترتیب برای داروهای PAR، PHE و CLP بهترین نتایج با کمترین خطای پیش­بینی را ارائه دادند. در مقایسه با کارهای قبلی نظیر روش­های جداسازی، روش MVC1 به­­کار برده شده می­تواند یک روش سـریع، دقیق، صحیح و ارزان برای اندازه­گیری همزمان ترکیبات فوق در فرآیندهای کنترل کیفی معمول در آزمایشگاه­های داروسازی فراهم کنند.
فصل اول: مقدمه
1-1- تاریخچه پیدایش زئولیت
زئولیت­­ها به­طور معمول ترکیبات آلومینوسیلیکات بلوری هستند که ساختار چهار وجهی TO4  Si) و Al  (T = به­­­صورت شبکۀ سه ­بعدی چهار اتصالی دارند و اکثراً دارای ابعاد مولکولی با اندازۀ حفره­های یکنواخت هستند [1،2]. تاریخچه زئولیت با کشف مادۀ طبیعی استیلبیت[1] در سال 1765 میلادی توسط کرونستد[2] شروع شد که با گرمادهی مواد سیلیکاتی مشاهده نمود که جوش خورده و در شعله ذوب می­شوند. با این مشاهدات کرونستد نام زئولیت که مشتق از لغات یونانی ”زئو“[3] به معنای جوشیدن و ”لیتوس“[4] به معنای سنگ می­باشد را برای این مواد انتخاب نمود [3]. اولین زئولیت سنتزی تحت شرایط هیدروترمال در سال 1862 میلادی توسط دویل[5] با نام لواینیت[6] تهیه شد [4]. در سال 1948 میلادی بارر[7] مقاله­ای را در مورد سنتز و خواص جذب سطحی زئولیت­ها گزارش نمود و در سال 1955 کاربید[8] تعدادی از شکل­های کاتیونی زئولیت سنتزی مثل زئولیت A و X را گزارش نمود که نوع X شکل فوجاسیت[9] (FAU) مواد کمیاب معدنی می­باشد. موبیل[10] در 1955 استفاده از زئولیت­های سنتزی به­عنوان جاذب سطحی و کاتالیزور را گزارش نمود و استفاده از زئولیت X به­­عنوان کاتالیزور جهت هیدروکراکینگ مواد نفتی و گازی را ارائه نمود.
        سنتز مواد با ساختار پیکره- باز[11] به­­عنوان یک بحث جالب و کاربردی در فناوری­های صنعتی نظیر استفاده در فرآیندهای کاتالیزوری، جذبی، تعویض یونی و جداسازی حائز اهمیت می­باشد [5]. علاوه بر زئولیت­های آلومینوسیلیکاتی که به­عنوان بهترین مواد پیکره- باز محسوب می­گردند، شبکه­های معدنی دیگری که با گروه­های آلی شکل­دهی می­شوند نیز مفید و کاربردی هستند [6]. در سال 1982 میلادی سنتز اولین خانوادۀ غربال­های مولکولی[12] بدون سیلیکا به­نام آلومینوفسفات­ها توسط ویلسون[13] و همکاران [7]  گزارش گردید که زمینۀ جدیدی در مورد سنتز مواد معدنی پیکره- باز به­­وجود آمد [8]. غربال­های مولکولی، اکسیدهای بلوری میکرومتخلخل هستند که دستۀ بزرگ مواد پیکره- باز با ساختار بلوری سه­ بعدی را شامل می­شوند و پل­های اکسیژنی در شبکۀ خود دارند.
ساختار آلومینوفسفات­ها (AlPO4-n) بر پایۀ یک تناوب چهار وجهی AlO4 و PO4 برای تولید سیستم پیکره- باز می­باشد که اتم­های آلومینیوم و فسفر موجود در شبکه می­توانند توسط سیلیس و عناصر دیگر نظیر Li، Be، B، Mg، Fe، Mn، Co، Zn، Ge، Ga، As و Ti برای تولید موقعیت­های اسید برونستد[14] و یا مراکز فعال کاتالیزوری جایگزین شوند [9،10]. در سال 1984 میلادی با وارد کردن سیلیس در هنگام سنتز غربال­های مولکولی آلومینوفسفات، نوع جدیدی از غربال­های مولکولی به­نام سیلیکوآلومینوفسـفات[15] (SAPO-n) تهیه شد که در این مواد با جانشینی P5+ توسط Si4+ بار شبکۀ زئولیت منفی می­شود و خواص مبادلۀ کاتیونی و کاتالیزوری اسید ضعیف تا متوسط را می­یابد [11]. خانوادۀ آلومینوفسفات­های فلزی[16] (MeAlPO-n) و سیلیکوآلومینوفسفات­های فلزی[17] (MeAPSO-n) نیز تهیه شدند. بعد از این سنتزها، فسفات­های فلزی مثل بریلیوم فسفات­ و ­روی فسفات با ساختار مشابۀ زئولیت­ها که بدون آلومینیوم بودند، تهیه شدند. هاروی[18] و همکاران [12] پنج نوع بریلیوم فسفات با ساختار مشابۀ زئولیت­های آلومینوسیلیکاتی و با ساختار جدید سنتز نمودند. استاکی[19] و همکاران [13] در سال 1991 میلادی غربال­های مولکولی بریلیوم فسفات، ­روی فسفات، بریلیوم آرسنات و روی آرسنات هیدراته با ساختار مشابه آلومینوسیلیکات­ها گزارش نمودند. این مواد در گسترۀ وسیعی از pH و در دمای سنتزی پائینتری نسبت به آلومینوفسفات­ها تهیه می­شوند. غربال­های مولکولی دیگر نظیر بریلیوم سیلیکات و روی سیلیکات، گالیم آرسنات و فسفات، بور سیلیکات و گالیم سیلیکات [18-14] نیز تهیه شدند. گویلو[20] و همکاران [19] با به­­کار بردن عنصر واسطۀ نیکل به­­جای آلومینیوم در شبکه آلومینوفسفات در حضور دی­آمین­ها به­­عنوان قالب ­دهنده[21]، نوع جدیدی از غربال­های مولکولی پیکره- باز به­نام نیکل فسفات با ریخت­VSB-1 [22] و VSB-5 را سنتز نمودند [20،21]. از غربال­های مولکولی دیگر که پایۀ فسفاتی دارند، می­توان به روی فسفات اشاره نمود که اولین بار توسط استاکی و همکاران [13] سنتز شد. این ترکیب دارای خواص جالبی نظیر تعویض یون، کاتالیزور نوری، رسانایی یونی، جداسازی و ذخیره کنندۀ گازهایی نظیر هیدروژن می­باشند [22،23]. یک دسته­بندی از غربال­های مولکولی در شکل 1-1 نشان داده شده است.
2-1- سنتز غربال ­های مولکولی به روش هیدروترمال معمول (CH)
معمولاً تبلور غربال­های مولکولی در حالت هیدروترمال در دمای پائین و در فشار خود­تولیدی[1] انجام می­شود. ژل اولیه حاوی منبع عناصر شبکه، آب و ترکیبات آلی و یا کاتیون­های معدنی به­­عنوان عوامل جهت دهندۀ ساختار[2] (SDAs) می­باشد. تشکیل غربال­های مولکولی به منبع اولیۀ عناصر شبکه، حلال، منبع کاتیون معدنی یا ترکیب آلی، ترکیب ژل اولیه، زمان و دمای سنتز بستگی دارد [25]. دو مکانیسم برای سنتز غربال­های مولکولی پیشنهاد شده است: در مکانیسم اول گونه­ها در حالت محلول هستند و در اثر واکنش با هم هسته­زایی و رشد بلورها انجام می­شود. در مکانیسم دوم که انتقال در فاز جامد می­باشد، ساختار غربال مولکولی از هیدروژل جامد تشکیل می­شود [26].
3-1- سنتز غربال ­های مولکولی توسط ریزموج (MW)
امواج در ناحیۀ ریزموج برای تسریع سنتز در واکنش­های آلی استفاده می­شوند. این امواج می­توانند بدون هیچ مشکلی گرما را از طریق دیوارۀ ظرف انتقال دهند و مخلوط واکنش را به سرعت و به­طور یکنواخت گرم کنند، به نحوی که سرعت گرمـادهی 2-1 درجۀ سانتیـگراد بر ثانیه برای 100 گـرم نـمونه به­وجود آورد. اثر گرمادهی تابش ریزموج از طریق فرآیند فقدان دی­الکتریک[1](ε)  ظاهر می­گردد [29-27]. مایعات و جامدات با هدایت بالا نظیر سوسپانسیون و مایعات قطبی فقدان دی­الکتریک بالایی نشان می­دهند، در حالی­که هیدروکربن­ها و حلال­های با قطبیت پائین اثرات گرمایی کمی را نشان می­دهند [30].
سنتز غربال­های مولکولی با ریزموج در مقایسه با هیدروترمال معمول دارای مزیت زمان واکنش کم و تبلور یکنواخت می­باشد. گرمادهی سریع و ایجاد نقاط داغ باعث کاهش قابل توجهی در زمان سنتز می­شود و هسته­زایی تحت گرمادهی ریزموج تقریباً ده مرتبه سریعتر می­باشد [31]. حل شدن سریع ژل سنتزی زئولیت باعث کاهش زمان تبلور در طی گرمادهی ریزموج می­شود و انرژی ریزموج می­تواند بدون تغییرات دمایی توسط حلال جذب گردد و باعث یکنواختی و سرعت گرمادهی شود. اولین آلومینوفسفات سنتزی توسط گرمادهی ریزموج توسط گیموس[2] با نام CoAPO-5 تهیه گردید [32]. امکان سنتز آلومینوفسفات­ها با وارد کردن رنگ­های ناپایدار در هیدروترمال مثل آبی- 159 و کومارین- 40[3] بدون تخریب رنگ توسط گرمادهی ریزموج امکان­پذیر می­شود که این امر به­­خاطر کاهش زمان تبلور با ریزموج می­باشد [33]. 
در دهه­های اخیر امکان تهیۀ ترکیبات با ساختارهای جدید و متنوع با به­کارگیری فنون جدید سنتزی نظیر روش سنتزی سولوترمال[4] [34] و روش یونوترمال[5] شامل استفاده از یک مایع یونی به­عنوان حلال و قالب­ دهنده [35] فراهم شده است. بیش از دویست گونه از انواع ساختارهای آلومینوفسفات پیکره-باز شناسـایی شدند که اینها شامـل ساختارهای پیـکره- باز خنثی (AlPO4-n)، MeAPO-n و آلومینـوفسـفات­های با شـبکه آنیونی می­باشند [1]. آلومینوفسـفات­های آنیونی شـامل یک شبکه سه­ بعدی و با ابعاد ساخته­ شده از تناوب پلی­هدرال آلومینیوم- مرکزی (AlO4، AlO5 و AlO6) و چهاروجهی فسفر- مرکزی P(Ob)n(Ot)4-n می­باشند (b و t به­­ترتیب نماینده پل و پایانی و n برابر 1، 2، 3 و 4 می­باشد) که باعث تشکیل استوکیومتری­های متنوع نظیر Al2P3O123−، AlP2O83−، AlP4O169−، Al5P6O243−، Al12P13O523−، Al13P18O7215−، Al11P12O483−، Al3P5O206−، Al3P4O163−، AlPO4(OH)، Al4P5O203− و غیره می­شود [36]. اخیراً لی[6] و همکاران [37] یک سری داده­ها شامل اطلاعاتی در زمینۀ ساختار آلومینوفسفات­های پیکره- باز گزارش نمودند.
[1] Dielectric Loss
[2] Gimus
[3] Coumarin-40
[4] Solvothermal
[5] Ionothermal

موضوعات: بدون موضوع  لینک ثابت
[سه شنبه 1399-10-09] [ 03:36:00 ق.ظ ]




<header class="entry-header">
<h1 class="entry-title">امروزه در مناطق مختلف جهان در خشکی و دریا به منظور استخراج&nbsp;<strong>&nbsp;</strong>نفت و گاز عملیات مختلفی صورت می گیرد. یکی از مشکلات دائمی در تولید نفت و گاز، فرایند تولید آب از مخازن می باشد که جز جدانشدنی فرایند تولید&nbsp;<a title="هیدروکربن” href="https://www.sid.ir/Fa/Journal/ViewPaper.aspx?ID=310011″>هیدروکربن</a>&nbsp;ها می باشد. این آب تولیدی به دلیل مجاورت با مخازن از لحاظ کیفیت شبیه به نفت و یا گاز تولیدی می باشد. ضمن اینکه مواد مختلفی در طی مراحل مختلف از اکتشاف تا تولید مورد استفاده قرار می گیرند که برخی از آنها خطرناک و سمی بوده و می توانند اثرات زیانباری از جنبه های مختلف داشته باشند. در مرحله برداشت از یک چاه نفت یا گاز، آب همراه از جمله آلودگی هایی می باشد که در این حین تولید شده و به طور قطع به یقین تاثیرات خود را برمحیط زیست خواهد گذاشت. در بسیاری از مناطق جهان قوانین و مقررات

<header class="entry-header">
</header>
<div class="entry-content">
<p>یکی از مهمترین عوامل در کاهش اثرات منفی زیست محیطی آب تولیدی مدیریت صحیح آن می باشد، بگونه ای که برخی مواقع هزینه های مورد نیاز در حذف آلودگیهای یک پسماند و یا کنترل انتشار آلودگی آن با اعمال مدیریتی صحیح و ابتکاری به میزان چشمگیری کاهش پیدا خواهد کرد.<br />با توجه به توسعه روز افزون صنعت نفت و گاز در کشور ما و اینکه به طور معمول با گذشت زمان و به دلایل مختلف، تولید آب همراه نفت و گاز روز به روز افزایش می یابد، در نظر گرفتن تمهیدات لازم جهت کاهش این صدمات و پیشگیری از آن ضروری به نظر می رسد.<br />با توجه به این ضرورت و اینکه بحث محیط زیست در طی سالهای اخیر جایگاه خوبی را در شرکت های نفتی پیدا کرده است، این پژوهش به بررسی مسائل مختلف آب تولیدی، روشهای تصفیه آب تولیدی و انتخاب روش مناسب جهت تصفیه آب همراه در سکوهای تولید نفت و گاز در دریا پرداخته است. شایان ذکر است این پایان نامه تحت حمایت شرکت نفت فلات قاره ایران و با همکاری واحد پژوهش و توسعه این شرکت انجام شده است.<br /><strong>فصل اول: کلیات</strong><br /><strong>1-1- آب تولیدی همراه نفت&nbsp;<strong>(</strong>PW<strong>)</strong></strong><br />سنگ&zwnj;های رسوبی كه در حال حاضر شامل لایه&zwnj;های رسوبی مختلفی است، در ابتدا از ته&zwnj;نشین شدن رسوبات اقیانوس&zwnj;ها، &zwnj;دریاها، دریاچه&zwnj;ها و جریان&zwnj;های دیگر حاصل شده&zwnj;اند. این رسوبات به طور طبیعی شامل مقدار زیادی آب هستند. این آب همچنان با این رسوبات دفن می&zwnj;شود و باقی می&zwnj;ماند و میلیون&zwnj;ها سال بعد به عنوان (Connate water) مورد توجه قرار می&zwnj;گیرد. بسی

پایان نامه ارشد: بررسی نظری اثر حضور ناخالصی های لانتانیدی بر روی ساختار الکترونی نانولوله های کربنی

2-8-2- نانو لوله چند جداره ……………………………………………………………………….8
1-8-3-فولرایت……………………………………………………………………………………….8
1-8-4- تروس یا حلقه ای………………………………………………………………………….8
1-8-5- ساختارهای غیر ایده آل……………………………………………………………………8
1-9- ساختارنانولوله ها……………………………………………………………………………..9
1-9-۱- ساختار هندسی…………………………………………………………………………….9
1-9-2 – ساختارالکترونی…………………………………………………………………………..10
1-10- فیزیکی و شیمیایی نانو لوله­ ها …………………………………………………………..11
1-11- واكنش‌پذیری شیمیایی نانولوله ­های کربنی………………………………………………11
1-12- نانو لوله كربنی- روشهای­تولید………………………………………………………………12
1-12-1- روش تخلیه قوس الکتریکی……………………………………………………………..12
1-12-2- روش فرسایش لیزر……………………………………………………………………….13
1-12-3- رسوب بخار شیمیایی…………………………………………………………………….13
1-13- ویژگی های نانو لوله های كربنی……………………………………………………………14
1-14- كاربردهای نانولوله‌های کربنی……………………………………………………………….16
1-14-1-کابل های برق………………………………………………………………………………..16
1-14-2- حسگرها…………………………………………………………………………………….16
1-14-3-پزشکی……………………………………………………………………………………..17
1-14-4-حافظه­ های ­نانولوله ­ای…………………………………………………………………..17
1-14-5- دیگر کاربردها………………………………………………………………………………..17
فصل دوم مقدمه ای بر شیمی محاسبات
2-1- شیمی محاسباتی……………………………………………………………………………19
2-2- شیمی محاسباتی شامل روشهای مختلف ریاضی در دو مدل تقسیم بندی می شود..19
2-2-1- مدل مكانیك مولكولی……………………………………………………………………..19
2-2-2- مدل مکانیک کوانتومی……………………………………………………………………..20
2-3- تئوری ساختار الكترونی………………………………………………………………………21
2-3-1- روش‌های نیمه تجربی……………………………………………………………………21
2-3-2- روش‌های آغازین (Ab initio)…………………………………………………………21
2-3-3- روشهایی بر پایه نظریه تابعیت چگالی(DFT)………………………………………..21
2-4- مجموعه پایه………………………………………………………………………………….21
2-5- تئوری تابعیت چگالی(DFT)………………………………………………………………….22
2-5-1- قضیه هوهنبرگ – کوهن…………………………………………………………………23
2-5-2- نظریه کوهن – شم………………………………………………………………………..25
2-5-2- تابعیت­های تبادل – همبستگی…………………………………………………………..26
2-6- تقریب های مورد استفاده در محاسباتDFT…………………………………………..
2-6-1- تقریب دانسیته محلی(LDA)……………………………………………………………27
2-6-2- تقریب شیب تعمیم یافته (GGA)……………………………………………………….29
2-6-3- روش پیوستگی آدیاباتیک (ACM)………………………………………………………..30
2-7- پتانسیل مؤثر هسته (ECP)…………………………………………………………………32
فصل سوم اشکال و جداول
3-1- اهمیت نانو لوله های کربنی (CNT)………………………………………………………..35
3-2- برنامه های محاسباتی مورد استفاده…………………………………………………….35
3-3- جزئیات محاسباتی……………………………………………………………………………36
3-4- شکل ساختارهای بهینه شده کمپلکس ها………………………………………………36
3-5- جداول…………………………………………………………………………………………45
فصل چهارم نتایج و بحث
4-1- بررسی نتایج بدست آمده برای کمپلکس [CNT-Ln(H2O)n]……………………………..60

پایان نامه

 


4-1-1- بررسی طول پیوندی و انرژی برهمکنش کمپلکس[CNT-Ln(H2O)n] ………………..60
4-1-2- بررسی هدایت الکتریکی کمپلکس [CNT-Ln(H2O)n]………………………………….62
4-1-3- بررسی نتایج بدست آمده از آنالیز QTAIM در کمپلکس [CNT-Ln(H2O)n]………….66
4-1-4- بررسی نتایج بدست آمده از آنالیز NBO در کمپلکس [CNT-Ln(H2O)n]………………68
4-2- بررسی نتایج کمپلکس [CNT-Ln(H2)n]……………………………………………………..70
4-2-1- بررسی طول پیوندی و انرژی برهمکنش برای کمپلکس  [CNT-Ln(H2)n]…………….70
4-2-2- بررسی هدایت الکتریکی کمپلکس  [ CNT-Ln(H2)n]…………………………………..72
4-2-3- نتایج بدست آمده از آنالیز QTAIM در کمپلکس [CNT-Ln(H2)n]………………………..75
4-2-4- نتایج آنالیز NBO در کمپلکس [CNT-Ln(H2)n]………………………………………………76
4-3- بررسی ناخالصی اتم لانتانیدی در نانولوله های BC3, BC2N…………………………..
4-3-1- بررسی ناخالصی اتم لانتانیدی در هدایت الکتریکی نانولوله BC3…………………..
4-3-2- بررسی ناخالصی اتم لانتانیدی در هدایت الکتریکی نانولوله BC2N……………….
4-4- نتیجه گیری……………………………………………………………………………………..84
4-5- پیشنهادات………………………………………………………………………………………84
منابع…………………………………………………………………………………………………..85
چکیده:
در این پایان نامه، به بررسی نظری اثر حضور ناخالصیهای لانتانیدی بر روی ساختار الکترونی نانولوله­های کربنی(CNT)  و نانولوله­های BC3،BC2N  پرداخته شده است. همچنین اثر کاتیونهای لانتانیدی (La3+,Eu3+,Lu3+) دکره شده در فرآیند جذب H2O و  H2در کمپلکس­های [CNT-Ln(H2O)n] و
 [CNT-Ln(H2)n] بررسی گردیده است. محاسبات شیمی کوانتومی در سطح نظریه تابعیت چگالی، برای این کمپلکس­ها با استفاده از روش محاسباتی B3LYP و از مجموعه پایه ECP/7s 6p 5d برای اتمهای لانتانیدی و هم چنین از مجموعه پایه 6-31G* برای سایر اتم­ها انجام شده است. انرژی برهمکنش، آنالیز اتم­ها در مولکولها(AIM)  و آنالیز اوربیتال­های طبیعی پیوندی (NBO) در کمپلکس­های [CNT-Ln(H2O)n] و [CNT-Ln(H2)n] مطالعه شده­اند. با جایگزین کردن کاتیون لانتانیوم در کمپلکسهای [BC3-La] و  [BC2N-La] نتایج محاسبات نشان داد که شکاف انرژی نسبت به نانولوله اولیه تغییر یافته و به ترتیب باعث کاهش و افزایش رسانایی در این کمپلکس­ها شده است.
فصل اول: نانولوله های کربنی
1-1- مقدمه
شیمی­فیزیک[1] دانشی از علم شیمی است که به بررسی ماهیت شیمیایی سیستم های شیمیایی، از نظر اصول و قوانین نظری فیزیکی می­پردازد. در واقع شیمی فیزیک رابطه میان دو علم شیمی و فیزیک را برقرار می­کند و به دانش فیزیک بسیار نزدیک است. رشته­هایی مانند نانو شیمی، شیمی سطح، شیمی کوانتوم، طیف سنجی مولکولی، ترمودینامیک، شیمی هسته­ای همه بیانگر ارتباط شیمی فیزیک به دانش فیزیک است ]1[.
2-1- نانو چیست؟
قرن بیست و یکم قرن فناوری نانو، پدیده ای بزرگ است که در تمامی گرایش­های علمی راه یافته است. فناوری نانو از کلمه یونانی به معنی “کوتوله” سرچشمه گرفته است. نانو فقط یک مقیاس است، یک میلیاردم یک متر و یا حدود یک صد هزارم ضخامت تار موی انسان است.
در بعد نانو خصوصیات فیزیکی و شیمیایی اتم ها، مولکول ها با خصوصیات توده ماده فرق دارد و همین مشخصات باعث پیدایش دستاوردهای جدیدی در علوم پزشکی و مهندسی شده است ]2[.
3-1- تاریخچه فناوری نانو
  ایده فناوری نانو برای اولین بار در سال 1959 توسط فیزیکدان معروف ریچارد فاینمن[1] که در بحث خود با عنوان “فضای زیادی در سطوح پایین وجود دارد” مطرح شده است. او در بحث خود، امکان سنتز از طریق دستکاری مستقیم اتم ها و مولکول ها، در آینده را ارائه داد. اصطلاح فناوری نانو اولین بار توسط نوریو تایونگوچی2 در سال 1974 جهت دستیابی به اندازه­هایی در حدود یک نانومتر مورد استفاده قرار گرفت. چشم انداز های فاینمن انقلابی در راه اندازی مسابقه جهانی فناوری نانو بود.
 در سال 1981 اریک درکسلراولین مقاله خود را در مورد نانو تکنولوژی مولکولی ارائه داد ]3و4[.
4-1- کربن
كربن یكی از متنوع ترین عناصر شناخته شده برای بشر است. تقریبا 79 درصد از شیمی آلی را کربن تشکیل می­دهد. کربن در حالت پایه دارای ساختار الکترونی 1s22s22p2 است. هیبریداسیون sp3 اتم های کربن، این اجازه را به کربن می­دهد که چهار پیوند کووالانسی با اتم های دیگر داشته باشد. در فناوری نانو، ترکیبات کربن یک دسته مهمی را تحت عنوان نانو ساختارهای کربنی به خود اختصاص می­دهند. نانو ساختارهای کربنی دارای خصوصیات فیزیکی و شیمیایی ویژه­ای هستند و به همین لحاظ باعث پیشرفت­های متفاوتی در عرصه فناوری نانو شده است ]5[.
5-1- انواع گونه های کربن
از لحاظ میکروسکوپی کربن در انواع مختلفی در طبیعت یافت می­شود. ترکیبات کربن مانند گرافیت، الماس، کربن­های بی شکل (آمورف)، فولرن، نانو الیاف کربنی، نانولوله­های کربنی و گرافن هستند. انواع گونه ­های کربن در شکل 1-1 آورده شده است. فولرن یک نانو ماده­ی صفر بعدی، نانولوله های کربنی یک نانوماده­ی یک بعدی و گرافیت به عنوان یک ماده سه بعدی در نظر گرفته می‌شوند [6]. در زیر بعضی از خصوصیات و ویژگی های انواع مختلف کربن آورده شده است.
1-5-1- گرافیت
گرافیت یکی از رایج ترین فرم­های کربن است. بر خلاف الماس، گرافیت یک هادی الکتریکی است. بنابراین می­توان آن را به عنوان نمونه در الکترود لامپ قوس الکتریکی استفاده کرد. در شرایط استاندارد گرافیت پایدارترین شکل کربن است. بنابراین از آن در ترموشیمی به عنوان شرایط استاندارد برای تعریف گرمای تشکیل ترکیبات کربن استفاده می­کنند. گرافیت یک ساختار شش ضلعی از اتم­های کربن است که دارای هیبرید sp2 می باشند. اتمهای کربن با پیوند های کوالانسی به هم متصل شده اند ]7[. شکل 1-2 صفحات گرافیت را نشان می­دهد. در لایه های بین صفحات نیروهای ضعیف واندر والسی وجود دارد و به همین علت لایه های گرافیت به خوبی بر روی هم نگه داشته می­شود. از پودر گرافیت به عنوان روان کننده خشک استفاده می­شود. از نظر فعالیت شیمیایی، گرافیت کمی فعال تر از الماس است و دلیل آن توانایی نفوذ پذیری واکنش­دهنده­ها بین لایه های شش ضلعی از اتم های کربن در گرافیت است ]8[.
2-5-1- الماس<p><a href="http://jemo.ir/%d9%be%d8%a7%db%8c%d8%a7%d9%86-%d9%86%d8%a7%d9%85%d9%87-%d8%a7%d8%b1%d8%b4%d8%af-%d8%a8%d8%b1%d8%b1%d8%b3%db%8c-%d9%88-%d8%a7%d9%86%d8%aa%d8%ae%d8%a7%d8%a8-%d8%b3%db%8c%d8%b3%d8%aa%d9%85-%d9%85%d9%86/"><img class="alignnone size-full wp-image-587224″ src="http://ziso.ir/wp-content/uploads/2020/10/thesis-paper-8.png” alt="مقالات و پایان نامه ارشد” width="400″ height="261″ /></a></p>

چاه<br /><br /></p>

</div>

ی برای جلوگیری از آلودگی های محیط زیست وضع و حتی در برخی از مناطق بسیاری از فعالیت هایی که منجر به تولید پسماندهای خطرناک نفت و گاز می شوند ممنوع گردیده است. حد مجاز نفت و روغن در آب تولیدی برای تخلیه به دریا در استرالیا mg/lit30 متوسط روزانه و mg/lit50 متوسط ماهانه می باشد. در خصوص موادی که از نظر محیط زیستی نگرانی قابل توجهی را ایجاد می کنند، بیشتر کشورها استانداردهای سخت و دقیقی برای تخلیه آب تولیدی تنطیم کرده اند. به عنوان مثال حد متوسط ماهیانه برای تخلیه نفت و روغن در آب تولیدی در ونزوئلا برابر با mg/lit&nbsp; 20 می باشد. در کشور ما میزان نفت و روغن در آب تولیدی برای تخلیه، بر اساس کنوانسیون کویت برای متوسط روزانهmg/lit &nbsp;15 می باشد. رشد روز افزون فعالیت های صنعتی از یک سو و عدم رعایت الزامات زیست محیطی و مدیریت نامناسب پسماندهای تولیدی از سوی دیگر، سبب شده است که در چند دهه اخیر مقادیر زیادی از پسماندهای ناشی از فعالیت های نفتی به محیط زیست راه پیدا کند. در صورتیکه برنامه ریزی مناسب جهت تصفیه و یا حذف پسماندهایی که به محیط زیست تخلیه می شوند صورت نپذیرد این مهم می تواند اثرات نامطلوبی به دنبال داشته باشد.&nbsp;<a title="اثرات زیست محیطی” href="http://jest.srbiau.ac.ir/article_14175.html">اثرات زیست محیطی</a>&nbsp;هیدروکربنها و مواد سمی موجود در آب تولیدی بر روی اکوسیستم، گیاهان، جانوران و انسان در این بین از مهمترین موضوعات خواهد بود. امروزه توسعه روز افزون آگاهی عمومی درباره محیط زیست در فرایند تولید از چاههای نفت و گاز باعث توجه شرکتها و خریداران به این مهم شده است، بطوریكه مسائل زیست محیطی نقش تعیین كننده ای را در انتخاب تجهیزات و همچنین استفاده از تكنولوزی های جدید برای دفع این مواد و به حداقل رساندن آلودگی، ایفا می كند.</h1>
</header>
<div class="entry-content">
<p>یکی از مهمترین عوامل در کاهش اثرات منفی زیست محیطی آب تولیدی مدیریت صحیح آن می باشد، بگونه ای که برخی مواقع هزینه های مورد نیاز در حذف آلودگیهای یک پسماند و یا کنترل انتشار آلودگی آن با اعمال مدیریتی صحیح و ابتکاری به میزان چشمگیری کاهش پیدا خواهد کرد.<br />با توجه به توسعه روز افزون صنعت نفت و گاز در کشور ما و اینکه به طور معمول با گذشت زمان و به دلایل مختلف، تولید آب همراه نفت و گاز روز به روز افزایش می یابد، در نظر گرفتن تمهیدات لازم جهت کاهش این صدمات و پیشگیری از آن ضروری به نظر می رسد.<br />با توجه به این ضرورت و اینکه بحث محیط زیست در طی سالهای اخیر جایگاه خوبی را در شرکت های نفتی پیدا کرده است، این پژوهش به بررسی مسائل مختلف آب تولیدی، روشهای تصفیه آب تولیدی و انتخاب روش مناسب جهت تصفیه آب همراه در سکوهای تولید نفت و گاز در دریا پرداخته است. شایان ذکر است این پایان نامه تحت حمایت شرکت نفت فلات قاره ایران و با همکاری واحد پژوهش و توسعه این شرکت انجام شده است.<br /><strong>فصل اول: کلیات</strong><br /><strong>1-1- آب تولیدی همراه نفت&nbsp;<strong>(</strong>PW<strong>)</strong></strong><br />سنگ&zwnj;های رسوبی كه در حال حاضر شامل لایه&zwnj;های رسوبی مختلفی است، در ابتدا از ته&zwnj;نشین شدن رسوبات اقیانوس&zwnj;ها، &zwnj;دریاها، دریاچه&zwnj;ها و جریان&zwnj;های دیگر حاصل شده&zwnj;اند. این رسوبات به طور طبیعی شامل مقدار زیادی آب هستند. این آب همچنان با این رسوبات دفن می&zwnj;شود و باقی می&zwnj;ماند و میلیون&zwnj;ها سال بعد به عنوان (Connate water) مورد توجه قرار می&zwnj;گیرد. بسیاری از لایه&zwnj;های رسوبی بزرگ، در ابتدا با آب های اقیانوس&zwnj;ها و دریاها همراه بوده&zwnj;اند، بنابراین در اینگونه رسوبات، آب همراه در اصل آب دریاها بوده است. بهرحال، در طی سال&zwnj;های مختلف رویدادهایی رخ می&zwnj;دهد كه طی آنها نفت كه از مواد&zwnj;آلی ته&zwnj;نشین شده با این رسوبات تشكیل شده است از جایی كه سنگ مبداء نامیده می&zwnj;شود به سمت سنگ&zwnj;های رسوبی با نفوذپذیری و تراوایی بیشتر مهاجرت می&zwnj;كند. نفت دارای دانسیته&zwnj;ای كمتر از آب بوده و لذا به سمت سطح آب آمده و آب در لایه&zwnj;های زیرین قرار می&zwnj;گیرد و این آب، آب حوزه&zwnj;های نفتی نام می&zwnj;گیرد که به صورت ناخواسته هنگام استخراج نفت یا گاز به سطح آورده می شود. شکل (1-1) نحوه قرارگیری گاز، نفت و آب در یک مخزن را نشان داده است.<br />طبق منابع موجود می&zwnj;توان گفت حدود سال 1938 بود كه وجود شكاف&zwnj;ها و حفره&zwnj;هایی در مخازن هیدروكربوری كه شامل آب هستند، شناخته شد. Fettke اولین كسی بود كه وجود آب را در مخازن تولید كنندة نفت گزارش داد. اما وی گمان می&zwnj;كرد كه این آب ممكن است در حین عملیات حفاری وارد حفره&zwnj;های مخزن شده باشد.<br />در بیشتر سازندهای حاوی نفت اینگونه گمان می&zwnj;رود كه سنگ مخزن قبل از اینكه توسط نفت اشغال شود، كاملاً به وسیله آب اشباع شده بوده است. هیدروكربن&zwnj;های با دانسیته كمتر به سمت موقعیت&zwnj;های تعادل دینامیكی و هیدرواستاتیكی مهاجرت می&zwnj;كنند،&zwnj; و سپس آب را از قسمت اعظم سنگ مخزن جابجا می&zwnj;كنند و جای آنرا می&zwnj;گیرند. البته نفت تمام آب را جابجا نخواهد كرد بنابراین سنگ مخزن به طور معمول شامل هیدروكربن&zwnj;های نفتی و آب می&zwnj;باشد.<br />به تدریج با انجام آزمایشات مختلف مشخص شد كه كیفیت این آب از لحاظ تركیبات شیمیایی حل شده در آن از یك مخزن هیدروكربنی به مخزن هیدروكربنی دیگر تفاوت دارد. همچنین با افزایش برداشت از یك مخزن هیدروكربنی مقدار آب تولیدی نیز افزایش می&zwnj;یابد. در سال&zwnj;های گذشته آب تولیدی هنگام استخراج منابع هیدروكربنی به عنوان بخشی از مواد زاید تولید شده در عملیات تولید مورد توجه قرار گرفته است.<br />در واقع آب تولیدی جزء جدا نشدنی فرآیند بازیابی هیدروكربن&zwnj;هاست و در حوزه&zwnj;های نفتی توسعه یافته مقدار آب تولیدی به مراتب بیشتر است.<br />آب تولیدی كه به آن آب شور (Brine) نیز گفته می&zwnj;شود می&zwnj;تواند شامل آب سازند، آب تزریق شده به مخزن، مقدار كمی آب میعان یافته و مقادیر كمی از تركیبات شیمیایی استفاده شده در عملیات تولید باشد. آب تولیدی بیشترین حجم مواد زاید تولیدی در عملیات تولید مواد هیدروكربنی را تشكیل می&zwnj;دهد. این جریان مواد زاید را می&zwnj;توان مواد زاید با حجم زیاد و سمیت كم فرض كرد. حجم آب تولیدی از مخازن گازی به مقدار قابل توجهی كمتر از مخازن نفتی بوده ولی آلودگی آلی آن در مقایسه با چاههای نفتی بیشتر می باشد. خصوصیات آب تولیدی نظیر شوری، دانسیته، فلزات و محتوای آلی آن از یك حوزة به حوزة دیگر تفاوت دارد.<br />تولید جهانی آب تولیدی همراه نفت حدود 250 میلیون بشکه به ازای 80 میلیون بشکه تولید نفت در روز تخمین زده می شود. این رقم نشان می دهد سرعت آب تولیدی به نفت تولیدی 3 به 1 می باشد.</p>
<p><a href="http://jemo.ir/%d9%be%d8%a7%db%8c%d8%a7%d9%86-%d9%86%d8%a7%d9%85%d9%87-%d8%a7%d8%b1%d8%b4%d8%af-%d8%a8%d8%b1%d8%b1%d8%b3%db%8c-%d9%88-%d8%a7%d9%86%d8%aa%d8%ae%d8%a7%d8%a8-%d8%b3%db%8c%d8%b3%d8%aa%d9%85-%d9%85%d9%86/"><img class="alignnone size-full wp-image-587224″ src="http://ziso.ir/wp-content/uploads/2020/10/thesis-paper-8.png” alt="مقالات و پایان نامه ارشد” width="400″ height="261″ /></a></p>
<p>&nbsp;</p>
<p><br />&nbsp;پیش&zwnj;بینی می&zwnj;شود میزان تولید این آب در طی قرن آینده به دو برابر مقدار فعلی افزایش یابد كه این مسئله لزوم توجه بیشتر به مسائل مربوط به مدیریت آب تولیدی را سبب می شود.<br />نمودار (1-1) میزان آب تولیدی همراه نفت در دریا در دهه های گذشته و پیش بینی آن تا سال های آتی را نشان داده است.<br /><strong>2-1- عوامل مؤثر برحجم آب تولیدی</strong><br />مدیریت آب تولیدی به دلیل حجم بالا و هزینه بهره برداری سنگین یک فاکتور کاملا کلیدی است. علاوه بر این با توجه به اینکه آب تولیدی یک رخداد طبیعی است، اگر به درستی مدیریت نشود تاثیرات زیست محیطی آن می تواند قابل توجه باشد. برخی از عواملی که می توانند بر حجم آب تولیدی در طی چرخه عمر یک چاه اثرگذار باشند عبارتند از:<br />1- روش های حفاری چاه<br />با ثابت بودن تمامی شرایط تولیدی، حجم آب تولیدی از یک چاه عمودی بیشتر از حجم آب تولیدی در یک چاه افقی است.<br />2- مکان حفر چاه<br />چنانچه مکان حفر یک چاه در یک مخزن هیدروکربوری با توجه به ساختار آن مخزن به خوبی انتخاب نگردد، بدون توجه به نوع چاه (افقی یا عمودی بودن) میزان آب تولیدی افزایش خواهد یافت.<br />3- چگونگی تکمیل چاه<br />هنگام تکمیل یک چاه بایستی به مکانیسم رانش سیالات هیدروکربنی موجود در آن مخزن توجه نمود.<br />4- نوع تکنولوژی جداسازی آب<br />از گذشته به منظور جداسازی آب همراه تولیدی از سیالات هیدروکربنی از تجهیزات و تصفیه کننده های سطحی استفاده می شود. البته این روش شامل هزینه های استخراج، تجهیزات و مواد شیمیایی تصفیه کننده می باشد.<br />5- تزریق آب به منظور افزایش راندمان تولید از مخازن<br />یکی از راه های افزایش میزان بازده تولیدی از مخازن نفتی، تزریق آب به درون مخزن می باشد. این آب باعث تثبیت فشار مخزن شده و موجب می شود نفت بیشتری تولید گردد. در مقابل این افزایش تولید، آب بیشتری به دلیل پیشروی سریعتر جبهه آب به سمت چاه تولیدی، تولید خواهد شد.<br />6- آسیب دیدگی دیواره لوله های جداری و چاه<br /><br /></p>
</div>

موضوعات: بدون موضوع  لینک ثابت
 [ 03:36:00 ق.ظ ]




فصل اول: پیش‌زمینه پژوهش

1-1- مقدمه………………………………………………………………………………………………………………… 1
1-2- حسگرها­ی شیمیایی………………………………………………………………………………………………. 2   
1-2-1- حسگرهای گرمایی…………………………………………………………………………………………. 3
1-2-2- حسگرهای جرمی………………………………………………………………………………………….. 4
1-2-3- حسگرهای الکتروشیمیایی………………………………………………………………………………… 4
1-3- الکترودهای کربنی………………………………………………………………………………………………… 6
1-4- الکترودهای کربن ­سرامیک………………………………………………………………………………………. 6
1-4-1- فرآیند سل-ژل………………………………………………………………………………………………. 7
1-5- الکترودهای اصلاح شده­ی شیمیایی…………………………………………………………………………… 8
1-5-1- روش­های بر پایه تشکیل پیوند کووالانسی……………………………………………………………. 9
1-5-2- روش­های بر پایه جذب سطحی برگشت­ناپذیر……………………………………………………. 10
1-5-3- پوشش الکترود­ها با فیلم­های پلیمری………………………………………………………………… 11
1-5-4- تجمع­های سازمان یافته………………………………………………………………………………….. 11
1-5-5- اصلاح الکترود­ها با نانو­مواد……………………………………………………………………………. 12
1-6- نانولوله­های کربنی……………………………………………………………………………………………….. 12
1-6-1- روش­های تولید نانو­لوله­های کربنی……………………………………………………………………. 16
1-6-2- ویژگی­ها و خصوصیات نانولوله­های کربنی…………………………………………………………. 17
1-6-3- کاربرد نانولوله­های­ کربنی در شیمی تجزیه………………………………………………………….. 20
1-7- مایعات یونی……………………………………………………………………………………………………… 20
1-7-1- ساختار مایعات یونی…………………………………………………………………………………….. 21
1-7-2- خواص فیزیکی و شیمیایی مایعات یونی……………………………………………………………. 22
1-7-3- سطوح اصلاح شده با مایعات یونی…………………………………………………………………… 23
1-7-4- کاربرد مایعات یونی در الکتروشیمی…………………………………………………………………. 28
1-8- الکترودهای اصلاح شده با هیبرید نانو­لوله­های کربنی و مایعات یونی……………………………….. 29
1-9- معرفی ترکیب مورد مطالعه……………………………………………………………………………………. 30
1-9-1- مورفین……………………………………………………………………………………………………… 30
1-9-2- اهمیت اندازه­گیری مورفین……………………………………………………………………………… 33
1-9-3- فنیل­افرین و اهمیت اندازه­گیری آن…………………………………………………………………… 33
1-10- اهداف پژوهشی کار حاضر………………………………………………………………………………….. 34
فصل دوم: مواد و روشها
2-1- مواد شیمیایی……………………………………………………………………………………………………… 36
2-2- وسایل و تجهیزات………………………………………………………………………………………………. 36
2-3- الکترودها………………………………………………………………………………………………………….. 37
2-4- روش تهیه الکترودهای کار……………………………………………………………………………………. 37
2-4-1- چگونگی تهیه CCE برهنه……………………………………………………………………………… 37
2-4-2- تولید الکترودهای کربن سرامیک اصلاح شده با MWCNT و IL……………………………… 38
2-5- الكترولیت‌ها………………………………………………………………………………………………………. 38
فصل سوم: نتایج و بحث
3-1- بررسی خواص الکتروشیمیایی الکترود کربن سرامیک (CCE)……………………………………….. 40
3-1-1- بررسی مورفولوژی سطحی الکترود کربن سرامیک……………………………………………….. 41
3-1-2- بررسی خواص الکترود­های کربن سرامیک اصلاح شده………………………………………….. 42
3-1-2- الف- الکترود کربن سرامیک اصلاح شده با نانولوله­های کربنی چند دیواره…………………. 42
3-1-2- ب- الکترود کربن سرامیک اصلاح شده با نانولوله­های کربنی چند دیواره و مایع یونی ….. 43
3-1-3- بررسی تاثیر الكترولیت حامل و pH بر روی رفتار الكتروشیمیایی الکترود/MWCNT/CCE/IL…….
3-1-4- بررسی خواص الکتروشیمیایی الکترود کربن سرامیک اصلاح شده با نانوتیوب­ کربنی چند دیواره و مایع یونی (IL/MWCNT/CCE)…45
3-1-5- مطالعه رفتار الکتروشیمیاییCCE/IL/MWCNT توسط [K 3Fe(CN)6]………………………. 46
3-1-6- بررسی پایداری IL/MWCNTs/CCE در قبال چرخه پتانسیل و زمان……………………….. 48
3-2- کاربرد الکترود اصلاح شده با IL/MWCNT…………………………………………………………..
3-2-1- الکتروکاتالیز مورفین……………………………………………………………………………………… 49
3-2-1-1- تاثیر pH  بر رفتار الکتروشیمیایی مورفین…………………………………………………… 50
3-2-1-2- تاثیر سرعت روبش پتانسیل…………………………………………………………………….. 53
3-2-1-3 – اندازه­گیری مورفین……………………………………………………………………………….. 54
  3-2-1-3- الف- ولتامتری چرخه­ای…………………………………………………………………….. 55
3-2-1-3- ب- پالس ولتامتری تفاضلی…………………………………………………………………. 56
3-3- ­­ اندازه گیری همزمان مورفین و فنیل­افرین…………………………………………………………………. 57

مقالات و پایان نامه ارشد

 


3-3-1- الکترواکسیداسیون فنیل افرین در سطح MWCNT/CCE/IL……………………………………….
3-3-1-1- تاثیر pH بر رفتار الکتروشیمیایی فنیل­افرین……………………………………………………… 59
3-3-1-2- تاثیر سرعت روبش پتانسیل………………………………………………………………………… 60
3-3-1-3- اندازه­گیری فنیل­افرین………………………………………………………………………………… 61
3-3-2- اکسایش ­الکتروشیمیایی مورفین و فنیل­افرین در روی الکترود IL/ MWCNT/CCE………………
3-3-3- اندازه­گیری همزمان در حضور غلظت ثابتی از مورفین…………………………………………….. 64
3-3-4- اندازه­گیری همزمان در حضور غلظت ثابتی از فنیل­افرین……………………………………….. 65
3-3-5- اندازه­گیری همزمان مورفین و فنیل­افرین همراه با تغییر غلظت هر دو ترکیب………………. 65
3-4- نتیجه­گیری………………………………………………………………………………………………….. 67
3-5- پیشنهادات………………………………………………………………………………………………….. 68
منابع………………………………………………………………………………………………………………… 69
چکیده:
در بخش اول این کار پژوهشی، نانوتیوب كربن چند دیواره (MWCNT ) و مایع یونی(IL) روی سطح الكترود كربن سرامیكی كه بوسیله­ روش سل- ژل تهیه شده بود، نشانده شد. فرآیند نشاندن بوسیله قطره­گذاری سوسپانسیونی از MWCNT/IL در دی متیل فرم آمید بر روی سطح الکترود ساخته شده صورت گرفت. در ادامه خواص الکتروکاتالیزی الکترود کربن سرامیک­ اصلاح شده با نانولوله­های کربنی چند­دیواره (CNT/CCE) و الکترود کربن­سرامیک اصلاح شده با نانولوله­های کربنی چند­دیواره و مایعات یونی (IL/CNT/CCE) با الکترود کربن سرامیک اصلاح نشده(CCE) مقایسه شده است. 
در بخش دوم این کار، رفتار الکتروشیمیایی مورفین و فنیل­افرین روی CCE، MWCNT/CCE و IL/CNT/CNT بررسی شد؛ ولتاموگرام چرخه­ای این دو ترکیب نشان می­دهد که جریان پیک اکسیداسیون آنها روی MWCNT/CCE/IL از جریان مربوط به MWCNT/CCE وCCE برهنه بزرگتر است، که از خصوصیات کاتالیتیکی بهتر نانوكامپوزیت حاصل از ­استفاده­ی همزمان MWCNT و  IL ناشی می­شود. نتایج حاصل از این مطالعات نشان می­دهد، که این الکترود می­تواند به عنوان حسگری مناسب، برای اندازه گیری مورفین و فنیل­افرین به کار رود. اندازه­گیری دو ترکیب ذکر شده به دو روش CV و پالس ولتامتری تفاضلی (DPV) انجام شد وحد تشخیص برای این دو گونه محاسبه شد.
 در پایان، اندازه­گیری همزمان مورفین و فنیل­افرین با استفاده از الکترود MWCNT/CCE/IL انجام شد و نشان داده شد که دو ترکیب مورد نظر بدون مزاحمت یکدیگر در ترکیبات مختلف قابل اندازه­گیری­ اند.
فصل اول: پیشینه پژوهش
1-1- مقدمه
شیوه­های کلاسیک تجزیه­ی شیمیایی و بیولوژیکی دربرگیرنده­ی واکنش­هایی هستند که در محلول و با افزایش معرف­ها و نمونه­ها انجام می­گیرند. امروزه تلاش برآن است که بتوان تجزیه را در سیستم­ بدون معرف انجام داد، استفاده ازروشهای دستگاهی که بیشتر از سیگنال حاصل از یک دستگاه برای رسیدن به چنین داده­هایی استفاده می­شود. مثلا در روشهای الکتروشیمیایی، معرف یا واکنشگر روی بستر الکترودی و به صورت تثبیت شده قرار گرفته و در نتیجه نیازی به اضافه نمودن آن توسط کاربر نمی­باشد. دو نوع اساسی از اندازه­گیری­های الکتروشیمیایی تجزیه، شامل پتانسیومتری و پتانسیواستایی است. هر دو نوع حد­اقل احتیاج به دو الکترود (هادی) و یک نمونه در تماس با الکترودها (الکترولیت) دارند که پیل الکتروشیمیایی را تشکیل می­دهند. بنابراین سطح الکترود، محل ارتباط یک هادی یونی و یک هادی الکترونی می­باشد. یکی از این دو الکترود به ماده یا مواد مورد اندازه­گیری جواب می­دهد و بنابراین به نام الکترود شناساگر یا کار نامیده می­شود. الکترود دوم که الکترود شاهد نامیده می­شود، دارای پتانسیل ثابت است (پتانسیل آن مستقل از خواص محلول می­باشد). امروزه در قلمرو الکتروشیمی یکی از بخش­هایی که مورد توجه قرار گرفته طراحی و ساخت الکترود­هایی است که در حالت ایده­آل بتوانند به یک گونه شیمیایی خاص به صورت کاملا گزینش­پذیر و با حساسیت بالا پاسخ دهند.
در سال­های اخیر استفاده از فناوری نانو، افق‌های جدیدی برای استفاده از نانوذرات و نانولوله‌های کربنی در شیمی تجزیه جهت تشخیص و اندازه­گیری برخی از ترکیبات شیمیایی و بیولوژیکی باز کرده است. یکی از کاربردهای جذاب نانوذرات از جمله نانولوله‌های کربنی تسهیل واکنش‌های انتقال الکترون است. به همین دلیل به عنوان یک واسطه‌گر در ساخت حسگرها و زیست حسگرها استفاده می‌شوند که سینتیک واکنش‌های الکتروشیمیایی کند را تسریع کرده و راهی برای اندازه‌گیری الکتروشیمیایی آنها فراهم می‌نماید
امروزه از مایعات یونی نیز به دلیل داشتن هدایت الکتریکی بالا در زمینه­های مختلف الکتروشیمی استفاده می­شود و کاربرد­های مختلفی از جمله به عنوان حلال بدون استفاده از الکترولیت زمینه، بهبود خواص الکتروکاتالیزی نانو­ذرات کربنی از جمله نانو­لوله­های کربنی، پایداری انواع اصلاحگرها و نیز اصلاح کننده الکترودی پیدا کرده­ اند ]4-1[.
در این کار پژوهشی از مایع یونی در حضور نانو­لوله­های کربنی جهت اصلاح و بهینه­سازی رفتار الکتروکاتالیتی الکترود کربن­سرامیک استفاده شده است و انتظار می­رود که خواص الکتروکاتالیزی این الکترود در حضور این اصلاح کننده ­ها بهبود یابد.

موضوعات: بدون موضوع  لینک ثابت
 [ 03:34:00 ق.ظ ]




1-2 الکترود………………………………………………………. 4

1-2-1 الکترودهای کربن……………………………………….. 4
1-2-1-1 الکترود کربن شیشه ­ای…………………………….. 5
1-2-1-2 الکترودهای فیبرکربنی………………………………. 6
1-2-1-3 الکترودهای خمیرکربن………………………………. 6
1-2-2 فعال­سازی سطح الکترود و انواع آن…………………… 7
1-2-2-1 پولیش دادن………………………………………….. 7
1-2-2-2 فعال­سازی حرارتی…………………………………… 7
1-2-2-3 فعال­سازی لیزری…………………………………….. 8
1-2-2-4 فعال­سازی با امواج صوتی– رادیویی……………….. 7
1-2-2-5 فعال­سازی با حلال…………………………………… 8
1-3 الکترودهای اصلاح­شده…………………………………… 8
1-3-1الكترودهای اصلاح­شده شیمیایی(CME) ……………..8
1-3-2 تهیه الکترودهای اصلاح شده…………………………. 10
1-3-3 انواع روش­های شیمیایی اصلاح سطح الکترودها ……10
1-3-3-1اصلاح الکترود توسط ترکیبات نانوساختار …………..10
1-3-3-2 اصلاح الکترودها توسط تک لایه­ های خود انباشته…10
1-3-3-3 اصلاح سطح الکترودها توسط روش سل- ژل……… 12
1-3-3-4 اصلاح الکترودها توسط مواد پلیمری……………….. 12
1-4 فناوری نانو…………………………………………………. 14
1-5 نانوساختارها………………………………………………. 14
1-5-1 نانوذرات………………………………………………….. 14
1-5-2 عملکرد نانوذرات در الکتروشیمی…………………….. 15
1-5-2-1 تثبیت زیستمولکول ها در سطح الکترود………….. 16
1-5-2-2 کاتالیز واکنش­های الکتروشیمیایی…………………. 16
1-5-2-3 تسریع انتقال الکترون……………………………….. 16
1-5-2-4 نشانه‌گذاری زیست­مولکول­ها …………………………16
1-5-2-5 نانوذرات به عنوان واکنش­گر عمل می­کنند…………. 16
1-5-3 سیستم دوفلزی-آلیاژی نانوذرات……………………. 18
1-6 حسگرها………………………………………………….. 19
1-6-1 حسگرهای الکتروشیمیایی………………………….. 20
1-6-2 خصوصیات حسگرها …………………………………..21
1-7 گرافن………………………………………………………. 21
1-7-1 گرافن تقویت شده ……………………………………..23
1-8 پلاتین……………………………………………………… 23
1-8-1الکتروکاتالیست آلیاژی پلاتین…………………………. 24
1-9 پیل سوختی………………………………………………. 25
1-9-1 مزایای پیل سوختی…………………………………… 27
1-9-2 انواع پیل های سوختی……………………………….. 27
1-9-3 غشاهای تبادل پروتون بری کاربرد در پیل سوختی…..29
1-10 اهداف پروژه حاضر……………………………………….. 31
فصل دوم: مواد و تجهیزات مورد استفاده، سنتز و شناسایی نانوکامپوزیت­ها و جزئیات روش­ها وآزمایش­های انجام شده
2-1 مواد شیمیایی مورد استفاده……………………………. 33
2-2- دستگاه­های مورد استفاده……………………………… 34
2-3- سنتز Pt/N-Gr…………………………………………….
2-4- روش تهیه الکترودهای کربن شیشه­ای اصلاح­شده با گرافن دوپه­شده با نیتروژن و پلاتین (Pt/N-Gr)…36
2-4-1- آماده سازی الکترود…………………………………… 36
2-4-2- اصلاح الکترود GC با گرافن……………………………. 36
2-5- سنتزنانوذرات دوتایی Pt-Fe……………………………..
2-5-1 اصلاح الکترود GC بانانوذرات Pt-Fe…………………….
فصل سوم: بحث و نتیجه گیری
3-1 بررسی رفتار الكتروشیمیایی هیدرازین روی الکترود کربن شیشه­ا­ی اصلاح­شده با گرافن دوپه­شده با نیتروژن و پلاتین….40
3-1-1-مقدمه………………………………………………….. 40
 3-1-2 بهبود پاسخ الکترود کربن شیشه­ای توسط اصلاح با نانو کامپوزیت Pt/N-Gr…….
3-1-3 بررسی اثر غلظت هیدرازین در رفتار الکتروکاتالیزوری الکترود اصلاح­شده با نانوکامپوزیت Pt/N-Gr……..
3-1-4  محاسبه حدتشخیص، حساسیت، و محدوده خطی الکترد اصلاح­شده با استفاده ازروش آمپرومتری….43

مقالات و پایان نامه ارشد

 


3-1-5 بررسی میزان پایداری پاسخ الکتروکاتالیزوری الکترود GC-Pt/N-Gr برای اکسیداسیون هیدرازین…….46
3-1-6 بررسی اثر سرعت روبش پتانسیل………………. 47
3-1-7 بررسی انتخاب­پذیری الکترود اصلاح­شده………….. 48
3-1-8 کاربرد تجزیه­ای الکترود………………………………. 49
3-1-9 نتیجه ­گیری…………………………………………… 52
 بخش دوم: طراحی پیل زیست سوختی گلوکز/اکسیژن…53
3-2-1 اکسیداسیون الکتروشیمیایی گلوکز با استفاده از الکترود کربن شیشه­ای اصلاح­شده با نانوذراتFe-Pt
3-2-2 به کارگیری نانوکامپوزیت Pt/N-Gr برای احیای اکسیژن….53
3-2-3 به کارگیری الکترود کربن شیشه­ای اصلاح­شده با نانوذرات Fe-Pt به عنوان آند پیل زیستی سوختی…54
3-2-3-1 بهبود پاسخ الکترود کربن شیشه­ای اصلاح با نانو ذرات  Fe-Pt نسبت به الکترود کربن شیشه­ای اصلاح­شده با کربن-پلاتین تجاری برای اکسیداسیون گلوکز…………………54
3-2-3-2 بررسی اثر غلظت گلوکز در رفتار الکتروکاتالیزوری الکترود اصلاح­شده با نانو ذراتFe-P……
3-2-3-3 محاسبه سطح فعال آند (الکترود کربن شیشه­ای اصلاح­شده با نانوذرات Fe-Pt)….56
3-2-3-4 بررسی پایداری الکترود اصلاح­شده با نانوذرات Fe-Pt…….
3-2-3-5 بررسی اثر مزاحمت اکسیژن برای اندازه­ گیری گلوکز در آند……58
3-2-4 به­کارگیری الکترود کربن شیشه­ای اصلاح­شده با/N-Gr  Pt به عنوان کاتد پیل  زیست­ سوختی…..58
3-2-4-1 بهبود پاسخ الکترود کربن شیشه­ای اصلاح­شده با نانو کامپوزیت  Pt/N-Gr نسبت به الکترود کربن شیشه­ای اصلاح­شده با کربن-پلاتین تجاری برای احیای اکسیژن………58
3-2-4-2 محاسبه سطح فعال کاتد (الکترود کربن شیشه­ای اصلاح­شده با Pt/N-Gr)…..60
3-2-4-3 بررسی مکانیسم احیای الکتروکاتالیزوری اکسیژن به روش ولتامتری هیدرودینامیک….61
3-2-4-4 بررسی پایداری الکترود اصلاح­شده با Pt/N-Gr………….
3-2-5کاربرد آند و کاتد طراحی شده جهت ساخت پیل زیست­سوختی گلوکز/ اکسیژن…..63
3-2-5-2 آماده سازی غشای نافیونی……………………….. 64
3-2-5-3 نتایج حاصل از بستن پیل گلوکز/ اکسیژن……….. 64
3-2-5-4 نتیجه­ گیری……………………………………………67
چکیده:
از میان روش­های متنوعی که برای تعیین کمی آنالیت­ها توسعه داده شده­اند روش­های الکتروشیمیایی به دلیل سادگی و حساسیت بالا دارای کاربردهای بسیار زیادی هستند اما اغلب واکنش اکسیداسیون و احیای مستقیم آنالیت در سطح الکترود معمولی، برگشت­ناپذیر بوده و نیاز به اضافه ولتاژ بالایی دارند. نانومواد به عنوان گزینه­های بسیار عالی برای اصلاح الکترودها معرفی شده­اند، بنابراین در این کار نانوکامپوزیت­های جدیدی ساخته شد و از آن­ها برای ساخت حسگرهای الکتروشیمیایی استفاده شد.
در قسمت اول کار برای اولین بار الکترود اصلاح­شده با نانو کامپوزیت Pt/N-Gr به طور موفقیت آمیز برای اندازه­گیری هیدرازین در پتانسیل­های کاهش یافته بکار گرفته شد. الکترود کربن شیشه­ای اصلاح­شده با    Pt/N-Gr فعالیت الکتروکاتالیزوری بسیار خوبی نسبت به اکسیداسیون هیدرازین در اضافه پتانسیل کاهش یافته نشان می­دهد(4/0- ولت نسبت به الکترود مرجع Ag/AgCl در محلول بافر فسفات با pH 9 ).  فعالیت الکتروکاتالیزی الکترود اصلاح­شده در برابر هیدرازین به وسیله ولتامتری چرخه­ای ارزیابی شد. برای دستیابی به بهترین پارامترهای کاتالیتیکی مانند حد تشخیص و گستره دینامیک خطی تکنیک آمپرومتری هیدرودینامیک مورد استفاده قرار گرفت و گستره­ی دینامیکی 1/0 تا 555 میکرومولار با حدتشخیص 66 نانومولار و حساسیت694/0 برای هیدرازین در الکترود اصلاح­شده با نانوکامپوزیت Pt/N-Gr به­دست آمد. سپس، انتخاب­پذیری الکترود اصلاح­شده، در حضور گونه­های خارجی مختلف موجود در محلول آنالیت، آزمایش شد. نتایجِ حاصل، نشان دهنده­ی انتخاب­پذیری قابل قبول برای این الکترود می­باشد. در ضمن از آن­جا که هیدرازین یکی از سوخت­های بکار رفته در طراحی پیل­های سوختی است، این الکترود می­تواند به عنوان آند در پیل­های سوختی بکار گرفته شود. در نهایت، کاربرد موفقیت­آمیز الکترود در نمونه حقیقی (آب بویلر) مورد بررسی قرار گرفت و صحت قابل قبولی به­دست آمد.
در قسمت دوم این پروژه، از الکتروکاتالیست نانوذرات آلیاژی Fe-Pt استفاده شد که قابلیت کاتالیزوری آن برای اکسیداسیون گلوکز در محلول بافر فسفات با 7=pH بسیار زیاد است و به طور قابل توجهی شدت جریان اکسیداسیون را افزایش داد.
الکترود کربن شیشه­ای اصلاح­شده باPt/N-Gr  فعالیت الکتروکاتالیزوری خوبی برای احیای اکسیژن نشان داد. بنابراین پیل زیستی گلوکز/اکسیژن را با بکارگیری الکترود کربن شیشه­ای اصلاح­شده با نانوکامپوزیت  Pt/N-Gr  به عنوان کاتد و الکترود کربن شیشه­ای اصلاح­شده با نانوذرات آلیاژی  Fe-Pt به عنوان آند طراحی شد.
پتانسیل پیل فوق mV700 ، دانسیته جریان mA.cm-2 31/0و توان خروجیmW.cm-2  85 به دست آمد.
فصل اول: مقدمه و تئوری

موضوعات: بدون موضوع  لینک ثابت
 [ 03:34:00 ق.ظ ]




1-1-پلی‌آمیدهای آروماتیک با عملکرد بالا………………………………………………………………3

1-2-پلی‌آمیدهای آروماتیك تجاری………………………………………………………………………..4
1-3-عوامل موثر در بهبود فرایندپذیری پلی‌آمیدها……………………………………………………….7
1-4-کاربرد پلی‌آمیدهای آروماتیک………………………………………………………………………11
1-5-روش های سنتز پلی‌آمیدهای آروماتیك…………………………………………………………..13
1-5-1- سنتز در محلول‌های با دمای پایین……………………………………………………………..13
1-5-2- سنتز در محلول‌های با دمای بالا……………………………………………………………….16
1-5-3- روش های دیگر پلیمریزاسیون…………………………………………………………………..19
1-6- مروری بر پژوهش های اخیر……………………………………………………………………….20
1-6-1- پلی‌آمیدهای آروماتیك حاوی گروههای CF3 …………………………………………………
1-6-2- پلی‌آمیدهای آروماتیک حاوی گروههای نفتالن……………………………………………….38
1-7-هدف پژوهش جاری………………………………………………………………………………….44
فصل دوم: فصل تجربی
2-1- مواد شیمیایی………………………………………………………………………………………..45
2-2- دستگاهوری………………………………………………………………………………………….45
2-3- سنتز مونومر…………………………………………………………………………………………46
  2-3-1- سنتز 5،1- ‌بیس‌(2-نیترو-4-تری‌فلوئورومتیل‌فنوکسی)نفتالن(BNFPN)……………………46
  2-3-2- سنتز 5،1- ‌بیس‌(2-آمینو-4-تری‌فلوئورومتیل‌فنوکسی)نفتالن(BAFPN)……………………47
2-4- سنتز پلی‌(آمید-اتر)ها………………………………………………………………………………48
2-5- تعیین حل پذیری پلیمرها……………………………………………………………………………48
2-6- تعیین گرانروی درونی محلول پلیمرها…………………………………………………………49
2-7- سایر آنالیزها……………………………………………………………………………………….49
فصل سوم: نتایج و بحث
3-1- سنتز مونومر………………………………………………………………………………………..50
  3-1-1- سنتز5،1- بیس( 2- نیترو-‌4-‌تری‌فلوئورومتیل‌فنوکسی)نفتالن(BNFPN)………………….50
  3-1-2- سنتز5،1- بیس(2- آمینو-4-‌تری‌فلوئورومتیل‌فنوکسی)نفتالن(BAFPN)…………………..54
3-2- سنتز پلی(آمید-اتر)ها…………………………………………………………………………….59
3-3- بررسی برخی خواص پلیمرها…………………………………………………………………….64
فصل چهارم: نتیجه گیری
4-1- نتیجه گیری………………………………………………………………………………………..70
پیوست…………………………………………………………………………………………………..71
فهرست منابع…………………………………………………………………………………………..74
چکیده:
دسته‌ی جدیدی از پلی(آمید-اتر)های فلوئوردار کاملا آروماتیک، بوسیله پلیمریزاسیون تراکمی مستقیم یک دی آمین بر پایه نفتالن به نام 5,1- بیس(2-آمینو-4-تری­فلوئورومتیل­فنوکسی)نفتالن (BAFPN) با چهار دی اسید مختلف شامل ترفتالیک اسید(TPA)، ایزوفتالیک اسید (IPA)، 2،5-پیریدین دی کربوکسیلیک اسید(2,5-PDA)  و 6،2-پیریدین دی کربوکسیلیک اسید (2,6-PDA) با موفقیت سنتز شدند و تاثیر حضور گروههای فلوئوردار CF3 و حلقه های صلب نفتالن بر خواص پلیمرها از

پایان نامه و مقاله

 

قبیل حل پذیری، بلورینگی و پایداری گرمایی مورد بررسی قرار گرفت. ساختار مونومر و پلیمرهای سنتز شده توسط طیف سنجی FT-IR و NMR بررسی و تایید شدند. میزان بلورینگی پلیمرها با مطالعاتXRD  بررسی شد که نتایج حاصل نشان داد گروههای CF3 متصل به زنجیره ها نظم ساختاری پلیمرها را به مقدار زیادی مختل کرده و منجر به کاهش بلورینگی شده است. همچنین پلیمرها از حل پذیری خوبی در حلال های آلی برخوردار بودند. بررسی مورفولوژی پلیمرها بوسیله تصاویر SEM به وضوح نشان داد که ساختار ماکرومولکولها به صورت میکروپلیت بودند. ترموگرام TGA پلیمرBAFPN/2,6-PDA  ، نشان داد که این پلی(آمید-اتر) دارای پایداری گرمایی بسیار خوبی است. همچنین مقدار Tg این پلیمر نیز با استفاده از نمودار DSC تعیین و مشخص شد.
مقدمه:
پلیمرهای با عملکرد بالا طبقه­ی مهمی از پلیمرها هستند که کاربردشان پیوسته در حال گسترش است که این کاربردها اغلب خواستار ترکیباتی مناسب و دارای خواصی مثل استحکام بالا، فرایندپذیری بالا ، چقرمگی، پایداری شیمیایی و حرارتی برجسته و ثابت دی­الکتریک کم می­باشند. پلی­آمیدها، پلی­ایمیدها و پلی(آمید-ایمید)ها به خاطر داشتن چنین خواصی توجه هستند اما  این دسته از پلیمرهای آروماتیک در سنتز و فراورش مشکل حل پذیری کم و دمای انتقال شیشه­ای (Tg) بالا را دارند. امروزه پژوهش های عملی و بنیادی روی افزایش فرایندپذیری و انحلال پذیری پلی‌آمیدهای آروماتیک متمرکز شده است تا کاربرد حرفه ای و صنعتی این پلیمرها افزایش یابد که از جمله این اصلاحات می توان به واردسازی اتصالات انعطاف‌پذیر در زنجیره‌های پلیمری، تعبیه گروههای حجیم در پیکره پلیمرها، حضور حلقه های هتروسیکل و همچنین حلقه های آویزان هتروآروماتیک در ساختار پلیمرها اشاره کرد. همچنین قرارگرفتن گروههای فلوئوردار در پیکره پلیمر، حل پذیری و عملکرد الکتریکی و دی الکتریکی پلیمر را افزایش میدهد که این افزایش به علت قطبش پذیری کم ، دوقطبی جزیی پیوندهای C-F و افزایش حجم آزاد می باشد. وجود گروههای هالوژنی مثل كلر و فلوئور پلیمرها را در برابر شعله، حلال، اسید و باز مقاوم می سازد كه باعث افزایش كاربرد آنها می شوند. از مهمترین این گروهها می توان به گروههای CF3 اشاره نمود که حضور این گروه برهمکنش های بین زنجیری را کاهش داده و با ایجاد سد چرخشی در پلی‌آمیدها حلالیت را تغییر می دهد. همچنین وجود واحدهای نفتالنی که گروههای آزادکننده الکترون مثل اتر یا آمین دارند و به عنوان یک بخش سخت با خواص فتواکتیو مطرح هستند، خواص ویژه ای به پلیمر می دهند و می توانند حل پذیری و فرایندپذیری پلیمرهای مقاوم حرارتی را بدون كاهش قابل توجه مقاومت حرارتی افزایش بدهند.
1-1- پلی‌آمیدهای آروماتیک با عملکرد بالا
توسعه پلیمرهای با عملکرد بالا از سال 1950 به منظور استفاده در صنایع هوافضا و الکترونیک آغاز شد. اصطلاح عملکرد بالا به پایداری غیرعادی به هنگام قرار گرفتن در شرایط نامساعد و ویژگی هایی که پلیمرهای معمول را بهبود میدهند، اطلاق می‌شود. عمومی ترین مشخصات پلیمرهای باعملكرد بالا و مقاوم در برابر دما ماندگاری طولانی مدت (بیشتر از 1000 ساعت در˚ C177) ، دمای تجزیه حرارتی بالای ˚ C450،  سرعت کم افت وزنی در دماهای بالا، دمای انحراف گرمایی بالا، داشتن ساختارهای آروماتیک، خواص مکانیکی عالی و وجود بخش های سخت که باعث افزایش  (بیشتر از ˚ C200) می‌شوند، می‌باشد. بطور کل پلیمرهای مقاوم حرارتی برای استفاده در دماهای بالا، باید دارای ویژگی های زیر باشند:
الف- دمای ذوب )نرم شدگی)  بالا (Tm)
ب- مقاومت در برابر تخریب اکسایشی در دمای بالا
ج- پایداری در برابر عوامل شیمیایی و تابشی
د- مقاومت در برابر دیگر فرآیندهای حرارتی تخریبی )غیر اکسایشی(
مهمترین فاکتورهایی که باعث عملکرد بالا و مقاومت گرمایی پلیمرها می‌شوند عبارتند از استحکام پیوندهای اصلی، پایدارسازی رزونانسی، نیروهای پیوندی ثانویه ( پیوند هیدروژنی، واندروالس، برهمکنش های قطبی و غیره)، توزیع وزن مولکولی، تقارن مولکولی، اتصالات عرضی، خلوص، مکانیسم شکافتگی پیوند، ساختارهای بین زنجیری سخت و افزودنی ها یا تقویت كننده ها ( فیبرها، خاك رس، نانوذرات مختلف) [25].
پلی‌آمیدها در طبیعت بصورت پروتئین‌ها و الیاف طبیعی مانند ابریشم و پشم و بصورت سنتزی در الیاف مصنوعی و پلاستیك‌ها یافت می‌شوند. اولین توسعه مربوط به پلی‌آمیدها با كار كاروترز پدر شیمی پلیمر در آمریكا، در سال 1935 میلادی آغاز شد. كاروترز، با استفاده از واكنش هگزا متیلن دی‌‌آمین و آدیپیك اسید موفق به تهیه پلی‌(هگزا‌متیلن‌آدیپامید) شد كه بعدها توسط کمپانی دوپونت نام تجاری نایلون6،6 بر روی این پلی‌آمیدها نهاده شد.[19] پلیمرهای با عملکرد بالا بواسطه معیارهایی مثل میزان مقاوت گرمایی، استحکام مکانیکی، چگالی مخصوص پایین، قابلیت هدایت بالا، خواص گرمایی و الکتریکی بالا، و عایق بودن در برابر صدا و مقاومت شعله بالا توصیف می‌شوند. از اینرو پلی‌آمیدهای آروماتیک به دلیل خواص مکانیکی و گرمایی بالایشان به عنوان پلیمرهای با عملکرد بالا مطرح می‌شوند که در تکنولوژی های پیشرفته می‌توانند جایگزین ترکیباتی مثل فلزات و سرامیک ها گردند6-70-9-62] [.

موضوعات: بدون موضوع  لینک ثابت
 [ 03:33:00 ق.ظ ]
 
مداحی های محرم